Skip to main content

Advertisement

Log in

Design of a RFID System for Real-Time Tracking of Laboratory Animals

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a real-time RFID system capable of tracking laboratory animals is designed and implemented. Four passive RFID tags based on low frequency are designed and implemented. The tags can be read by any RFID reader that operates on the low frequency range 125–134 kHz. The tags are designed through the investigation of various antenna, encoding, modulation, and energy harvesting techniques. The tag receives the electromagnetic signal via the antenna, and converts it to a DC signal that the microcontroller can use to manipulate the electromagnetic signal with the data such that the reader can decode the unique tag identifier. RFID sensors are designed and implemented to collect data from various monitored areas of a semi natural environment. The data is sent to a central data coordinator for pre-processing and middleware for data error checking, display and storage. The RFID system can successfully detect and store movement data in real time. A read range of 14.5 cm is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wang, K., Diet, A., Chakra, S. A., Conessa, C., Grzeskowiak, M., Bouaziz, T., Protat, S., Delcroix, D., Rousseau, L., Lissorgues, G., and Joisel, A. (2012). Detecting range and coupling coefficient tradeoff with a multiple loops reader antenna for small size RFID LF tags, in 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 154–159.

  2. Wahlsten, D., Metten, P., Phillips, T. J., Boehm, S. L., Burkhart-Kasch, S., Dorow, J., et al. (2003). Different data from different labs: Lessons from studies of gene-environment interaction. Journal of Neurobiology, 54, 283–311.

    Article  Google Scholar 

  3. PharmaSeq. (2013). Tagging of laboratory mice using p-Chip. New Jersey: PharmaSeq.

    Google Scholar 

  4. Balch, T., Khan, Z., & Veloso, M. (2001). Automatically tracking and analyzing the behavior of live insect colonies. Montreal, Quebec: AGENTS.

    Book  Google Scholar 

  5. Goddarda, J. S., Gleasona, S. S., Kerekesa, R. A., Paulusa, M. J., Smithb, M. F., Weisenbergerb, A. G., and Welchb, B. (2003). Two methods for tracking small animals in SPECT imaging, in SPIE-The International Society for Optical Engineering, Bellingham, Washington, pp. 129-139.

  6. Farid, Z., Nordin, R., and Ismail, M. (2013). Recent advances in wireless indoor localization techniques and system. Journal of Computer Networks and Communications, 2013, 1–11.

  7. Voulodimos, A. S., Patrikakis, C. Z., Sideridis, A. B., Ntafis, V. A., & Xylouri, E. M. (2010). A complete farm management system based on animal identification using RFID technology. Computer and Electronics in Agriculture, 70(2), 380–388.

    Article  Google Scholar 

  8. Samad, A., Murdeshwar, P., & Hameed, Z. (2010). High-credibility RFID-based animal data recording system suitable for small-holding rural dairy farmers. Computer and Electronics in Agriculture, 73(2), 213–218.

    Article  Google Scholar 

  9. Kritzler, M., Lewejohann, L., Krger, A., Raubal, M., and Sachser, N. (2006). An rfidbased tracking system for laboratory mice in a semi-natural environment, in Pervasive 2006 Workshop Proceedings. Dublin, Ireland.

  10. Ozguven, E. E., & Ozbay, K. (2015). An RFID-based inventory management framework for emergency relief operations. Transportation Research Part C: Emerging Technologies, 57, 166–187.

    Article  Google Scholar 

  11. Iso.org, ‘ISO 11785:1996—Radio frequency identification of animalsTechnical concept’, 2015. [Online]. Accessed Nov 08, 2015, from http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=19982.

  12. Klaus, F., & Handbook, R. F. I. D. (2003). Fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication (3rd ed.). New Jersey: Wiley.

    Google Scholar 

  13. Lehpamer, H. (2008). RFID design principles (1st ed., pp. 133–201). Massachusetts: Artech House, Incorporated.

    Google Scholar 

  14. Youbok, L. (2003). Antenna circuit design for RFID applications (pp. 1–50). Arizona: Microchip Technologies Incoporated.

    Google Scholar 

  15. Prescott, T. (2009). Manchester Coding Basics Application Note. Techniques, p. 24. www.atmel.com.

  16. Lee, Y., & Sorrells, P. (2004). microID ® 125 kHz RFID system design guide. Arizona: Microchip Technology Incorporated.

    Google Scholar 

  17. Wang, Z., Ye, N., Malekian, R., Xiao F., Wang, R. (2016). TrackT: Accurate tracking of RFID tags with mm-level accuracy using first-order taylor series approximation. Ad Hoc Networks, 53, 132–144.

    Article  Google Scholar 

  18. Malekian, R., Moloisane, N.R., Nair, L., Maharaj, B.T., Chude-Okonkwo, U.A.K. (2014). Design and Implementation of a Wireless OBD II Fleet Management System. IEEE Sensors Journal, 17(4), 1154–1164.

    Article  Google Scholar 

  19. Malekian, R., Kavishe, A.F., Maharaj, B.T., Gupta, P.K., Singh, G., Waschefort, H. (2016) Smart vehicle navigation system using hidden Markov model and RFID technology. Wireless Personal Communications,90 (4), 1717–1742.

    Article  Google Scholar 

  20. Jin, X., Shao, J., Zhang, X., An W., Malekian, R. (2016) Modeling of nonlinear system based on deep learning framework. Nonlinear Dynamics, 84(3), 1327–1340.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Research Foundation of South Africa, Research Development Program by the University of Pretoria as well as National Natural Science Foundation of P. R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian.

Additional information

Zwivhuya Romeo Ramudzuli and Reza Malekian have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramudzuli, Z.R., Malekian, R. & Ye, N. Design of a RFID System for Real-Time Tracking of Laboratory Animals. Wireless Pers Commun 95, 3883–3903 (2017). https://doi.org/10.1007/s11277-017-4030-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4030-9

Keywords

Navigation