Skip to main content

Advertisement

Log in

Composite Fault Diagnosis in Wireless Sensor Networks Using Neural Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are spatially distributed devices to support various applications. The undesirable behavior of the sensor node affects the computational efficiency and quality of service. Fault detection, identification, and isolation in WSNs will increase assurance of quality, reliability, and safety. In this paper, a novel neural network based fault diagnosis algorithm is proposed for WSNs to handle the composite fault environment. Composite fault includes hard, soft, intermittent, and transient faults. The proposed fault diagnosis protocol is based on gradient descent and evolutionary approach. It detects, diagnose, and isolate the faulty nodes in the network. The proposed protocol works in four phases such as clustering phase, communication phase, fault detection and classification phase, and isolation phase. Simulation results show that the proposed protocol performs better than the existing protocols in terms of detection accuracy, false alarm rate, false positive rate, and detection latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  3. Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.

    Article  Google Scholar 

  4. Barooah, P., Chenji, H., Stoleru, R., & Kalmr-Nagy, T. (2012). Cut detection in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 483–490.

    Article  Google Scholar 

  5. Mahapatro, A., & Khilar, P. M. (2013). Fault diagnosis in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(4), 2000–2026.

    Article  Google Scholar 

  6. Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., & Grandoni, F. (2000). Threshold-based mechanisms to discriminate transient from intermittent faults. IEEE Transactions on Computers, 49(3), 230–245.

    Article  Google Scholar 

  7. Panda, M., & Khilar, P. M. (2015). Distributed Byzantine fault detection technique in wireless sensor networks based on hypothesis testing. Computers and Electrical Engineering, 48, 270–285.

    Article  Google Scholar 

  8. Panda, M., & Khilar, P. M. (2015). Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test. Ad Hoc Networks, 25, 170–184.

    Article  Google Scholar 

  9. Sahoo, M. N., & Khilar, P. M. (2014). Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wireless Personal Communications, 78(2), 1571–1591.

    Article  Google Scholar 

  10. Chen, J., Kher, S., & Somani, A. (2006). Distributed fault detection of wireless sensor networks. In Proceedings of the 2006 workshop on Dependability issues in wireless ad hoc networks and sensor networks (pp. 65–72). ACM.

  11. Xu, X., Chen, W., Wan, J., & Yu, R. (2008). Distributed fault diagnosis of wireless sensor networks. In 11th IEEE international conference on communication technology 2008 (ICCT 2008) (pp. 148–151). IEEE.

  12. Saha, T., & Mahapatra, S. (2011). Distributed fault diagnosis in wireless sensor networks. In 2011 International conference on process automation, control and computing (PACC) (pp. 1–5). IEEE.

  13. Mourad, E., & Nayak, A. (2012). Comparison-based system-level fault diagnosis: A neural network approach. IEEE Transactions on Parallel and Distributed Systems, 23(6), 1047–1059.

    Article  Google Scholar 

  14. Ji, Z., Bing-shu, W., Yong-guang, M., Rong-hua, Z., & Jian, D. (2006). Fault diagnosis of sensor network using information fusion defined on different reference sets. In 2006 CIE international conference on radar (pp. 1–5). IEEE.

  15. Jabbari, A., Jedermann, R., & Lang, W. (2007). Application of computational intelligence for sensor fault detection and isolation. World Academy of Science, Engineering and Technology, 33, 265–270.

    Google Scholar 

  16. Moustapha, A. I., & Selmic, R. R. (2008). Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Transactions on Instrumentation and Measurement, 57(5), 981–988.

    Article  Google Scholar 

  17. Zhu, D., Bai, J., & Yang, S. X. (2009). A multi-fault diagnosis method for sensor systems based on principle component analysis. Sensors, 10(1), 241–253.

    Article  Google Scholar 

  18. Barron, J. W., Moustapha, A. I., & Selmic, R. R. (2008). Real-time implementation of fault detection in wireless sensor networks using neural networks. In Fifth international conference on information technology: New generations 2008 (ITNG 2008) (pp. 378–383). IEEE.

  19. Zhong, C., Eliasson, J., Makitaavola, H., & Zhang, F. (2010). A cluster-based localization method using RSSI for heterogeneous wireless sensor networks. In 2010 6th International conference on wireless communications networking and mobile computing (WiCOM) (pp. 1–6). IEEE.

  20. Vasar, C., Filip, I., Szeidert, I., & Borza, I. (2010). Fault detection methods for wireless sensor networks using neural networks. In 2010 International joint conference on computational cybernetics and technical informatics (ICCC-CONTI) (pp. 295–298). IEEE.

  21. Ray, S., Demirkol, I., & Heinzelman, W. (2013). Supporting bursty traffic in wireless sensor networks through a distributed advertisement-based TDMA protocol (ATMA). Ad Hoc Networks, 11(3), 959–974.

    Article  Google Scholar 

  22. Han, C., Dianati, M., Tafazolli, R., Liu, X., & Shen, X. (2012). A novel distributed asynchronous multichannel MAC scheme for large-scale vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 61(7), 3125–3138.

    Article  Google Scholar 

  23. Mishra, S., Swain, R. R., Samal, T. K., & Kabat, M. R. (2015). CS-ATMA: A hybrid single channel MAC layer protocol for wireless sensor networks. In L. Jain, H. Behera, J. Mandal & D. Mohapatra (Eds.), Computational intelligence in data mining (Vol. 3, pp. 271–279). New Delhi: Springer.

  24. Swain, R. R., Mishra, S., Samal, T. K., & Kabat, M. R. (2014). Adv-MMAC: An advertisement based multichannel MAC protocol for wireless sensor networks. In 2014 International conference on contemporary computing and informatics (IC3I) (pp. 347–352). IEEE.

  25. Swain, R. R., Mishra, S., Samal, T. K., & Kabat, M. R. (2016). An energy efficient advertisement based multichannel distributed MAC protocol for wireless sensor networks (Adv-MMAC). Wireless Personal Communications. doi:10.1007/s11277-016-3791-x.

  26. Dash, T., Nayak, T., & Swain, R. R. (2015). Controlling wall following robot navigation based on gravitational search and feed forward neural network. In Proceedings of the 2nd international conference on perception and machine intelligence (pp. 196–200). ACM.

  27. Dash, T., & Behera, H. S. (2015). A fuzzy MLP approach for non-linear pattern classification. In K. R. Venugopal & S. C. Lingareddy (Eds.), International conference on communication and computing (ICC-2014) (pp. 314–323). Bangalore: Computer Networks and Security.

  28. Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: MIT press.

    Google Scholar 

  29. Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.

    Article  Google Scholar 

  30. Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory (1st ed., Vol. 1). New Delhi: PHI Publication.

    MATH  Google Scholar 

  31. The Network Simulator NS-2. (2010). http://www.isi.edu/nsnam/ns/.

  32. MATLAB. http://www.mathworks.in/.

  33. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.

    Article  MATH  Google Scholar 

  34. Dash, T., Nayak, S. K., & Behera, H. S. (2015). Hybrid gravitational search and particle swarm based fuzzy MLP for medical data classification. In L. Jain, H. Behera, J. Mandal & D. Mohapatra (Eds.), Computational intelligence in data mining (Vol. 1, pp. 35–43). New Delhi: Springer.

  35. Dash, T. (2015). A study on intrusion detection using neural networks trained with evolutionary algorithms. Soft Computing. doi:10.1007/s00500-015-1967-z.

    Google Scholar 

Download references

Acknowledgements

All the simulations are carried out in Parallel Distributed Computing Laboratory at National Institute of Technology (NIT), Rourkela, India. The author is very much thankful to Tirtharaj Dash (BITS Goa, India), Sourav Kumar Bhoi, and Munesh Singh (NIT Rourkela, India) for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Ranjan Swain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, R.R., Khilar, P.M. Composite Fault Diagnosis in Wireless Sensor Networks Using Neural Networks. Wireless Pers Commun 95, 2507–2548 (2017). https://doi.org/10.1007/s11277-016-3931-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3931-3

Keywords

Navigation