Skip to main content
Log in

Effect of Laser Modulation on Dispersion Induced Chirp Microwave Signal Generation by Using Temporal Pulse Shaping Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A photonic approach for generating an arbitrary chirp microwave waveform using optical coupler of different length is proposed and experimentally demonstrated. The chirp microwave waveform can be used in Radar system to improve its range Doppler resolution. The paper give the specific details about various performance parameters like input signal frequency and power, output signal parameters viz output frequency, chirp rate, chirp bandwidth and time bandwidth product etc. In this proposed approach two single mode optical fibers of different lengths are used to create the phase variation of the light coming from the continuous wave laser. The overall model and its performance parameters are computed on optiwave software and compared with experimental results carried out in lab which shows the validity of our experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Li, C., Lubecke, V. M., Boric-Lubecke, O., & Lin, J. (2013). A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2046–2060.

    Article  Google Scholar 

  2. Postolache, O., Girão, P., Madeira, R., & Postolache, G. (2010). Microwave FMCW Doppler radar implementation for in-house pervasive health care system. In Proceedings of IEEE international workshop on medical measurements (pp. 47–52). IEEE.

  3. Miyakawa, M., & Hayashi, T. (1994). Non-invasive thermometry using a chirp pulse microwave—Tomographic measurement of temperature change in saline solution phantom of the human body. In Proceedings of the 24th European microwave conference (pp. 613–618).

  4. Bertero, M., Miyakawa, M., Boccacci, P., Conte, F., Orikasa, K., & Furutani, M. (2000). Image restoration in chirp-pulse microwave CT (CP-MCT). IEEE Transactions on Biomedical Engineering, 47(5), 690–699.

    Article  Google Scholar 

  5. Bertero, M., Miyakawa, M., Boccacci, P., Conte, F., Orikasa, K., & Furutani, M. (2000). Image restoration in chirp-pulse microwave CT (CP-MCT). IEEE Transactions on Biomedical Engineering, 47(5), 690–699.

    Article  Google Scholar 

  6. Rihaczek, A. W. (1996). Principles of high-resolution radar. London: Artech House.

    MATH  Google Scholar 

  7. Griffiths, H. D., & Bradford, W. J. (1992). Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters. IEE Proceedings F, 139, 160–169.

    Google Scholar 

  8. Dai, Y., & Yao, J. P. (2009). Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response. IEEE Photonics Technology Letters, 21(9), 569–571.

    Article  Google Scholar 

  9. Dai, Y., & Yao, J. P. (2007). Microwave pulse phase encoding using a photonic microwave delay-line filter. Optics Letters, 32(24), 3486–3488.

    Article  Google Scholar 

  10. Chi, H., & Yao, J. P. (2007). An approach to photonic generation of high frequency phase-coded RF pulses. IEEE Photonics Technology Letters, 19(10), 768–770.

    Article  Google Scholar 

  11. Chi, H., & Yao, J. P. (2008). Photonic generation of phase-coded millimeter-wave signal using a polarization modulator. IEEE Microwave and Wireless Components Letters, 18(5), 371–373.

    Article  Google Scholar 

  12. Li, Z., Li, W., Chi, H., Zhang, X., & Yao, J. (2011). Photonic generation of phase-coded microwave signal with large frequency tunability. IEEE Photonics Technology Letters, 23(11), 712–714.

    Article  Google Scholar 

  13. Ghelfi, P., Scotti, F., Laghezza, F., & Bogoni, A. (2012). Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars. Journal of Lightwave Technology, 30(11), 1638–1644.

    Article  Google Scholar 

  14. Singh, M., & Raghuwanshi, S. K. (2015). Effect of higher order dispersion parameters on optical millimeter-wave generation using three parallel external optical modulators. Journal of Applied Physics (American Institute of Physics), 117, 023116.

    Google Scholar 

  15. Singh, M., & Raghuwanshi, S. K. (2014). Microwave generation analysis with higher order dispersion in two cascaded Mach Zehnder modulator. Optik, 125, 761–771.

    Article  Google Scholar 

  16. Lin, I., McKinney, J. D., & Weiner, A. M. (2005). Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication. IEEE Microwave and Wireless Components Letters, 15(4), 226–228.

    Article  Google Scholar 

  17. McKinney, J. D., Leaird, D. E., & Weiner, A. M. (2002). Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Optics Letters, 27(15), 1345–1347.

    Article  Google Scholar 

  18. Xiao, S., McKinney, J. D., & Weiner, A. M. (2004). Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper. IEEE Photonics Technology Letters, 16(8), 1936–1938.

    Article  Google Scholar 

  19. Raghuwanshi, S. K., Singh, M., & Sharma, R. (2016). A complete Mathematical model to study the characteristic of an arbitrary geometry LiNbO3 structure for high speed Mach–Zehnder modulator for radar application. Journal of Optical Communications. doi:10.1515/joc-2016-0008.

    Google Scholar 

  20. Wang, C., & Yao, J. P. (2008). Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photonics Technology Letters, 20(11), 882–884.

    Article  Google Scholar 

  21. Raghuwanshi, S. K., Kumar, R., Srivastava, A., & Srivastava, N. K. (2016). A new proposed scheme to generate arbitrary microwave waveform by using four C-bands laser. Journal of Optical Communications. doi:10.1515/joc-2016-0114.

    Google Scholar 

  22. Wang, C., & Yao, J. P. (2009). Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating. Journal of Lightwave Technology, 27(16), 3336–3341.

    Article  Google Scholar 

  23. Raghuwanshi, S. K., Kumar, R., Srivastava, A., & Srivastava, N. K. (2016). Dual-chirp arbitrary microwave waveform generation by using a dual parallel Mach–Zehnder modulator feeding with RF chirp signal. Progress in Electromagnetics Research C, 65, 79–92.

    Article  Google Scholar 

  24. Palodiya, V., & Raghuwanshi, S. K. (2016). Comprehensive study of Z-cut highly integrated LiNbO3 optical modulator with adjustable chirp parameters. Journal of Optical Communications. doi:10.1515/joc-2015-0080.

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Satellite Application Center (SAC), ISRO, Ahmadabad, India for financial support. The proposed work is carried out under the Project Number-ISRO/RES/4/617/2014-15 dated September 1, 2014 entitled “Photonic Microwave Arbitrary Waveform Generation with Adjustable Chirp Parameter based on Remote Sensing Applications” under taken by corresponding author of paper Dr. Sanjeev Kumar Raghuwanshi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Raghuwanshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghuwanshi, S.K., Srivastava, N.K., Srivastava, A. et al. Effect of Laser Modulation on Dispersion Induced Chirp Microwave Signal Generation by Using Temporal Pulse Shaping Technique. Wireless Pers Commun 95, 1451–1468 (2017). https://doi.org/10.1007/s11277-016-3859-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3859-7

Keywords

Navigation