Skip to main content

Advertisement

Log in

Design of (4, 8) Binary Code with MDS and Zigzag-Decodable Property

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Dedicated to network code structured distributed storage system, a novel (4, 8) storage code is designed. The code possesses the following properties: operation within binary field , maximum distance separable property, zigzag decodable, requiring symmetric storage overhead among multiple storage nodes, and requiring little storage overhead . In the design of such a storage code, we first let original packets shift to the right by several bits and then add them together within binary field in bitwise manner . We propose a smart design on a cyclic matrix that represents the number of bits shifted by those packet. Existing works do not hold these properties simultaneously , which have the drawback of high encoding and decoding complexity, large storage overhead, and complicated storage room allocation procedure, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fukayama, A., Iwamoto, H., Motegi, M., Sato, H., Takenaka, H., Tsuchikawa, M., et al. (2013). Designing carrier’s online storage family cloud for enhancing telecom home services. In Proceedings of the IEEE 17th international conference intelligence in next generation networks (ICIN) (pp. 75–85). Venice, Italy.

  2. Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M. J., & Ramchandran, K. (2010). Network coding for distributed storage systems. IEEE Transactions on Information Theory, 56(9), 4539–4551.

    Article  Google Scholar 

  3. Ghemawat, S., Gobioff, H., Leung, S.T. (2003). The Google file system. In SOSP ’03 Proceedings of the nineteenth ACM symposium on operating systems principles (pp. 29–43). New York, USA.

  4. Jones, T., Koniges, A., Yates, R. K. (2000). Performance of the IBM general parallel file system. In Proceedings of the IEEE international conference parallel and distributed processing symposium.(IPDPS) (pp. 673–681). Cancun, Mexico.

  5. Zhao, T. Z., March, V., Dong, S. B., & See, S. (2010). Evaluation of a performance model of lustre file system, the fifth annual chinagrid conference (ChinaGrid) (pp. 191–196). China: Guangzho.

  6. Ahlswede, R., Cai, N., Li, S.-Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

    Article  MathSciNet  MATH  Google Scholar 

  7. Papailiopoulos, D. S., Luo, J., & Dimakis, A. G. (2012). Simple regenerating codes: Network coding for cloud storage. In Proceedings of the IEEE INFOCOM (pp. 2801–2805). Orlando, USA.

  8. Cadambe, V. R., Huang, C., & Li, J. (2011). Permutation code: Optimal exact-repair of a single failed node in MDS code based distributed storage systems. In Proceedings of the IEEE ISIT (pp. 1225–1229). St. Petersburg, Russia.

  9. Dimakis, A. G., Ramchandran, K., Wu, Y., & Changho, S. (2011). A survey on network codes for distributed storage. Proceedings of the IEEE, 99(3), 476–489.

    Article  Google Scholar 

  10. Zhu, B., Shum, K. W., Li, H., & Hou, H. X. (2014). General fractional repetition codes for distributed storage systems. IEEE Communications Letters, 18(4), 660–663.

    Article  Google Scholar 

  11. Cadambe, V. R., Huang, C., Li, J., & Mehrotra, S. (2011). Polynomial length MDS codes with optimal repair in distributed storage. In Procedings of IEEE ASILOMAR (pp. 1850–1854). Pacific Grove, CA, USA.

  12. Thangaraj, A., & Sankar, C. (2011). Quasicyclic MDS codes for distributed storage with efficient exact repair. IEEE information theory workshop (pp. 45–49). Paraty, Brazil.

  13. Dai, M., Kwan, H. Y., & Sung, C. W. (2013). Linear network coding strategies for the multiple-access relay channel with packet erasures. IEEE Transactions on Wireless Communications, 12(1), 218–227.

    Article  Google Scholar 

  14. Seroussi, G., & Roth, R. M. (1986). On MDS extensions of generalized Reed-Solomon codes. IEEE Transactions on Information Theory, 32(3), 349–354.

    Article  MathSciNet  MATH  Google Scholar 

  15. Vingelmann, P., Pedersen, M. V., Fitzek, F. H. P., & Heide, J. (Oct. 2010). Multimedia distribution using network coding on the iPhone platform. In Proceedings of the ACM multimedia workshop on moobile cloud media computing ( pp. 1–5). Firenze, Italy.

  16. Shahabinejad, M., Khabbazian, M., & Ardakani, M. (2014). An efficient binary locally repairable code for Hadoop distributed file system. IEEE Communications Letters, 18(8), 1287–1290.

    Article  Google Scholar 

  17. Heide, J., Pedersen, M. V., Fitzek, F. H. P., & Medard, M. (2011). On the code parameters and coding vector representation for practical RLNC. In Proceedings of the IEEE international conference in communications (pp. 1–5). Kyoto, Japan.

  18. Vingelmann, P., Zanaty, P., Fitzek, F. H. P., Charaf, H. (2009). Implementation of random linear network coding on OpenGL-enabled graphics cards. In Proceedings of the IEEE EW (pp. 1–5). Aalborg, Denmark.

  19. Hwang, M. S., & Lee, C. H. (2001). Secure access schemes in mobile database systems. Transactions on Emerging Telecommunications Communications Technology, 12(4), 303–310.

    Article  MathSciNet  Google Scholar 

  20. Piro, G., Grieco, L. A., Boggia, G., & Chatzimisios, P. (2014). Information-centric networking and multimedia services: Present and future challenges. Transactions on Emerging Telecommunications Communications Technology, 25(4), 392–406.

    Article  Google Scholar 

  21. Shibli, M.A., Masood, R., Ghazi, Y., Muftic , S. (2013). MagicNET: Mobile agents data protection system. In Transactions on Emerging Telecommunications Communications Technology, 26(5), 813–835.

  22. Gollakota, S., Katabi, D. (2008). Zigzag decoding: Combating hidden terminals in wireless networks. In Proceedings of SIGCOM (pp. 159–170). New York, USA.

  23. Blaum, M., Bruck, J., & Vardy, A. (1996). MDS array codes with independent parity symbols. IEEE Transactions on Information Theory, 42(2), 529–542.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tamo, I., Wang, Z., & Bruck, J. (2013). Zigzag codes: MDS array codes with optimal rebuilding. IEEE Transactions on Information Theory, 59(3), 1597–1616.

    Article  MathSciNet  Google Scholar 

  25. En Gad, E., Mateescu, R., Blagojevic, F., Guyot, C., & Bandic, Z. (Jul. 2013). Repair-optimal MDS array codes over GF(2). In Proceedings of the IEEE ISIT (pp. 887–891), Istanbul, Turkey.

  26. Xiao, M., Medard, M., & Aulin, T. (2007). A binary coding approach for combination networks and general erasure networks. In Proceedings of the IEEE ISIT, (pp. 786–790). Nice, France.

  27. Li, J., Yuan, J., Malaney, R., Xiao, M., & Chen, W. (2012). Full-diversity binary frame-wise network coding for multiple-source multiple-relay networks over slow-fading channels. IEEE Transactions on Vehicular Technology, 61(3), 1346–1360.

    Article  Google Scholar 

  28. Sung, C. W., & Gong, X. (2013). A ZigZag-decodable code with the MDS property for distributed storage systems. In Proceedings of the IEEE ISIT (pp. 341–345). Istanbul, Turkey.

  29. Hou, H., Shum, K. W., & Li, H. (2013). Construction of exact-basic codes for distributed storage systems at the MSR point. In Proceedings of the IEEE international conference on big data (pp. 33–38). Santa Clara, USA. .

Download references

Acknowledgments

This research was supported by research grant from Natural Science Foundation of China (61301182, 61171071, 61575126), Specialized Research Fund for the Doctoral Program of Higher Education from the Ministry of Education(20134408120004), Natural Science Foundation of Guangdong Province (S2013040016857, 2015A030313552), Yumiao Engineering from Education Department of Guangdong Province (2013LYM_0077), the Key Project of Department of Education of Guangdong Province (2015KTSCX121), Open Fund from The State Key Laboratory of Integrated Services Networks Xidian University (ISN15-06), Foundation of Shenzhen City (KQCX20140509172609163, GJHS20120621143440025, JCYJ20140418095735590, JCYJ201503-24140036847, ZDSY20120612094614154), Natural Science Foundation of SZU (00002501, 00036107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Lu, Z., Shen, D. et al. Design of (4, 8) Binary Code with MDS and Zigzag-Decodable Property. Wireless Pers Commun 89, 1–13 (2016). https://doi.org/10.1007/s11277-016-3234-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3234-8

Keywords

Navigation