Skip to main content

Advertisement

Log in

Novel PSWF-Based Multidimensional Constellation Modulation for Broadband Satellite Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Aimed at power-limited and nonlinear channels of satellite communications, a novel PSWF-based multidimensional constellation modulation is proposed. This modulation maps initial data onto points in a multidimensional constellation, where multiple orthogonal PSWF pulses with high energy concentration are used to convey these constellation points. To maximize the minimum Euclidean distance, an efficient constellation design is presented. Simulation and measurement results show the modulation is 4 dB better than 16-APSK and 16-QAM in SNR for SER = 10−5 and has outstanding advantages in the SER performance and resilience against nonlinear distortions for the same spectral efficiency and data rate as other modulations currently employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Graell i Amat, A., Abdel Nour, C., & Douillard, C. (2009). Serially concatenated continuous phase modulation for satellite communications. IEEE Transactions on Wireless Communications, 8(6), 3260–3269.

    Article  Google Scholar 

  2. Piemontese, A., Modenini, A., Colavolpe, G., & Alagha, N. S. (2013). Improving the spectral efficiency of nonlinear satelite systems through time–frequency packing and advanced receiver processing. IEEE Transactions on AES, 61(8), 3404–3412.

    Article  Google Scholar 

  3. Sacchi, C., Gera, G., & Regazzoni, C. (2004). W-band physical layer design issues in the context of the DAVID-DCE experiment. International Journal of Satellite Communications and Networking, 22(2), 193–215.

    Article  Google Scholar 

  4. Liu, Z., Xie, Q., Peng, K., & Yang, Z. (2011). APSK constellation with Gray mapping. IEEE Communications Letters, 15(12), 1271–1273.

    Article  Google Scholar 

  5. Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2). ETSI Standard. EN 302 307, V1.1.2, June 2006.

  6. Thuakaew, S., Chayratsami P. (2013). The optimum ring ratio of 16-APSK in LTE uplink over nonlinear system. In The 15th international conference on advanced communication technology, Pyeong Chang, Korea (pp. 805–809).

  7. Gomes, M., Silva, V., Cercas, F., et al. (2008). Low Back-off 16-APSK transmission using magnitude modulation and symbol quantization. In IEEE international workshop on satellite and space communications. IWSSC 2008 (pp. 229–233).

  8. Rice, M., Oliphant, T., Haddadin, O., et al. (2007). Estimation technique for GMSK using linear detectors in satellite communications. IEEE Transactions on AES, 43(4), 1484–1495.

    Google Scholar 

  9. Thompson, S. C., Ahmed, A. U., Proakis, J. G., et al. (2008). Constant envelope OFDM. IEEE Transactions on Communications, 56(8), 1300–1312.

    Article  Google Scholar 

  10. Joao, A., Marcello, L. (2002). Orthogonal pulse shape modulation for impulse radio. In International telecommunication symposium, Natal, Brazil (pp. 916–921).

  11. Joao, A., & Marcello, L. (2007). Spectrally efficient UWB pulse shaping with application in orthogonal PSM. IEEE Transactions on Communications, 55(2), 313–322.

    Article  Google Scholar 

  12. Usuda, K., Zhang, H., Nakagawa, M. (2004). M-ary pulse shape modulation for PSWF-based UWB systems in multipath fading environment. In Proceedings of the IEEE globecom conference, Dallas, TX (pp. 3498–3504).

  13. Sacchi, C., Rossi, T., Ruggieri, M., et al. (2011). Efficient waveform design for high-bit-rate W-band satellite transmissions. IEEE Transactions on AES, 47(2), 974–995.

    Google Scholar 

  14. Chu, X., & Murch, R. D. (2005). Multidimensional modulation for ultra-wideband multiple-access impulse radio in wireless multipath channels. IEEE Transactions on Wireless Communications, 4(5), 2373–2386.

    Article  Google Scholar 

  15. Saha, D., & Birdsall, T. G. (1989). Quadrature–quadrature phase-shift keying. IEEE Transactions on Communications, 37(5), 437–448.

    Article  Google Scholar 

  16. Tran, N. H., & Nguyen, H. H. (2007). A novel multi-dimensional mapping of 8-PSK for BICM-ID. IEEE Transactions on Wireless Communications, 6(3), 1133–1142.

    Article  MathSciNet  Google Scholar 

  17. Tran, N. H., & Nguyen, H. H. (2006). Multi-dimensional mappings of M-ary constellations for BICM-ID systems. IEICE Transactions Fundamentals, 89(7), 2088–2091.

    Article  Google Scholar 

  18. Slepian, D., & Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis, and uncertainty-I. Bell System Technology Journal, 40(1), 43–46.

    Article  MathSciNet  MATH  Google Scholar 

  19. Parr, B., Cho, B., & Wallace, K. (2003). A novel ultra-wideband pulse design algorithm. IEEE Communication Letters, 7(5), 219–221.

    Article  Google Scholar 

  20. Wang, H, Zhao, Z, Liu, X., et al. (2011). Communication system based on non-sinusoidal time domain orthogonal modulation and communication method. PCT, China, 2011.5.27.

  21. Proakis, J. G. (2005). Digital communications, the fourth edition (pp. 257–260). Beijing: Publishing House of Electronics Industry.

    Google Scholar 

  22. Gill, P. E., Murray, W., & Saunders, M. A. (2006). An SQP algorithm for large scale constrained optimization. SIAM Journal on Optimization, 12(4), 979–1006.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasdon, L. S., Waren, A. D., Jain, A., & Ratner, M. (1994). Design and testing of a generalized reduced gradient code for nonlinear programming. Association for Computing Machinery Transactions on Mathematical Software, 4(1), 34–50.

    Article  MATH  Google Scholar 

  24. Viswanathan, J., & Grossmann, I. E. (1990). A combined penalty function and outer-approximation method for MINLP optimization. Computers & Chemical Engineering, 14(7), 769–782.

    Article  Google Scholar 

  25. Conway, J. H., & Sloane, N. J. A. (1998). Sphere packings, lattices and groups (3rd ed., pp. 125–128). New York: Springer.

    Google Scholar 

  26. Porath, J. E., & Aulin, T. (2003). Design of multidimensional signal constellations. IEE Proceedings, 150(5), 317–323.

    Article  Google Scholar 

  27. Wong, T. C., Kwon, H. M., Mukherjee, A. (2010). Hybrid multi-dimensional modulation for gaussian and fading channels. In Proceedings of the IEEE 72nd vehicular technology conference, Ottawa, Canada (pp. 21–25).

  28. Gao, H. (2010). Space construction and geometric object (pp. 45–60). Beijing: Science Press.

    Google Scholar 

  29. Moura, E., & Henderson, D. G. (1996). Experiencing geometry: on plane and sphere (pp. 135–145). New Jersey: Prentice Hall.

    Google Scholar 

  30. Zhou, H. (2010). Advanced geometry (pp. 78–80). Beijing: Science Press.

    Google Scholar 

  31. Proakis, John G. (2005). Digital communications, the fourth edition (pp. 202–203). Beijing: Publishing House of Electronics Industry.

    Google Scholar 

  32. Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29(11), 1715–1720.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund (No. 60772056) and the Special Foundation Project of Taishan Scholar of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaonan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, H., Zhao, Z. et al. Novel PSWF-Based Multidimensional Constellation Modulation for Broadband Satellite Communication. Wireless Pers Commun 88, 493–524 (2016). https://doi.org/10.1007/s11277-015-3167-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3167-7

Keywords

Navigation