Skip to main content
Log in

TCPNC-DGSA: Efficient Network Coding Scheme for TCP in Multi-hop Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) has emerged as a promising solution to enhance spectrum utilization. In CR networks (CRNs), the secondary users can opportunistically exploit frequency bands when the primary users (PUs) do not occupy the bands. In this communication paradigm, transmission control protocol (TCP) performance may suffer from significant degradation due to the features of CRNs. In this paper, we investigate the limitations of TCP in multi-channel multi-radio multi-hop CRNs, and propose a novel TCP called TCP Network Coding Dynamic Generation Size Adjustment (TCPNC-DGSA) based on network coding. We dynamically adjust generation size in network coding operation according to the wireless communication environment—Generation Round Trip Time. In the meanwhile, we modify the TCP mechanism to fit into CRNs, by considering spectrum sensing state, spectrum changing state and presence of PUs. The simulation results indicate that TCPNC-DGSA can significantly improve the network performance in terms of throughput, bandwidth efficiency and delay. To the best of our knowledge, TCPNC-DGSA is the first TCP for CRNs from a network coding perspective, which can guarantee a quality of service in terms of delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. FCC, Et docket no 03-222 notice of proposed rulemaking and order, Federal Communications Commission, Technical Report, December 2003.

  2. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation dynamic spectrum access cognitive radio wireless networks: A survey. Elsevier Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  3. Mitola III. J. (2000). Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. Thesis, KTH Royal Institute of Technology.

  4. Cormio, C., & Chowdhury, K. R. (2009). A survey on MAC protocols for cognitive radio networks. Elsevier Ad Hoc Networks, 7(7), 1315–1329.

    Article  Google Scholar 

  5. Haykin, S., Reed, J. H., Li, G. Y., & Shafi, M. (2009). Scanning the issue. Proceedings of the IEEE: Special Issues on Cognitive Radio, 97(5), 784–786.

    Article  Google Scholar 

  6. Cheng, G., Liu, W., Li, Y., & Cheng, W. (2007). Joint on-demand routing and spectrum assignment in cognitive radio networks. In Proceedings IEEE ICC, 2005 (pp. 6499–6503).

  7. How, K. C., Ma, M., & Qin, Y. (2011). Routing and QoS provisioning in cognitive radio networks. Elsevier Computer Networks, 55(1), 330–342.

    Article  Google Scholar 

  8. Caleffi, M., Akyildiz, I. F., & Paura, L. (2012). OPERA: optimal routing metric for cognitive radio ad hoc networks. IEEE Transactions on Wireless Communications, 11(8), 2884–2894.

    Google Scholar 

  9. Pan, M., Zhang, C., Li, P., & Fang, Y. (2011). Joint routing and link scheduling for cognitive radio networks under uncertain spectrum supply. In Proceedings IEEE INFOCOM, 2011 (pp. 2237–2245).

  10. Pan, M., Yue, H., Zhang, C., & Fang, Y. (2013). Path selection under budget constraints in multihop cognitive radio networks. IEEE Transactions on Mobile Computing, 12(6), 1133–1145.

    Article  Google Scholar 

  11. Zhong, X., Qin, Y., Yang, Y., & Li, L. (2014). CROR: Coding-aware opportunistic routing in multi-channel cognitive radio networks. In Proceedings IEEE GLOBECOM 2014.

  12. Qin, Y., Zhong, X., Yang, Y., Li, Y., & Li, L. (2014). Joint channel assignment and opportunistic routing for maximizing throughput in cognitive radio networks. In Proceedings IEEE GLOBECOM 2014.

  13. Zhong, X., Qin, Y., & Li, L. (2014). Capacity analysis in multi-radio multi-channel cognitive radio networks: A small world perspective. Springer Wireless Personal Communications,. doi:10.1007/s11277-014-1981-y. (Published online: 03 August 2014).

    Google Scholar 

  14. Slingerland, A. M., Pawelczak, P., Prasad, R., Lo, A., & Hekmat, R. (2007). Performance of transport control protocol over dynamic spectrum access links. In Proceedings IEEE DySPAN 2007 (pp. 486–495).

  15. Issariyakul, T., Pillutla, L. S., & Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57–63.

    Article  Google Scholar 

  16. Luo, C., Yu, F. R., Ji, H., & Leung, V. C. M. (2010). Cross-layer design for TCP performance improvement in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(5), 2485–2495.

    Article  Google Scholar 

  17. Luo, C., Yu, F. R., Ji, H., & Leung, V. C. M. (2011). Optimal channel access for TCP performance improvement in cognitive radio networks. Springer Wireless Networks, 17(2), 479–492.

    Article  Google Scholar 

  18. Wang, J., Huang, A., & Wang, W. (2012). TCP throughput enhancement for cognitive radio networks through lower-layer configurations. In Proceedings IEEE PIMRC 2012 (pp. 1424–1429).

  19. Sarkar, D., & Narayan, H. (2010). Transport layer protocols for cognitive networks. In Proceedings IEEE INFOCOM Workshops 2010 (pp. 1–6).

  20. Felice, M. D., Chowdhury, K. R., & Bononi, L. (2009). Modeling and performance evaluation of transmission control protocol over cognitive radio ad hoc networks. In Proceedings ACM MSWiM 2009 (pp. 4–12).

  21. Chowdhury, K. R., Felice, M. D., & Akyildiz, I. F. (2009). TP-CRAHN: A transport protocol for cognitive radio ad-hoc networks. In Proceedings IEEE INFOCOM 2009 (pp. 2482–2490).

  22. Chowdhury, K. R., Felice, M. D., & Akyildiz, I. F. (2013). TCP CRAHN: A transport control protocol for cognitive radio ad hoc networks. IEEE Transactions on Mobile Computing, 12(4), 790–803.

    Article  Google Scholar 

  23. Al-Ali, A. K., & Chowdhury, K. R. (2013). TFRC-CR: An equation-based transport protocol for cognitive radio networks. Elsevier Ad Hoc Networks, 11(6), 1836–1847.

    Article  Google Scholar 

  24. Song, Y., & Xie, J. (2013). End-to-end congestion control in multi-hop cognitive radio ad hoc networks: To timeout or not to timeout? In Proceedings IEEE GLOBECOM 2013 (pp. 4390–4395).

  25. Floyd, S., & Henderson, T. (1999). The new Reno modifications to TCPs fast recovery algorithm. IETF RFC 2582.

  26. Brakmo, L. S., & Paterson, L. L. (1995). TCP Vegas: End to end congestion avoidance on a global Internet. IEEE Journal on Selected Areas in Communications, 13(8), 1465–1480.

    Article  Google Scholar 

  27. Jacobson, V. (1988). Congestion avoidance and control. Computer Communication Review, 18(4), 314–329.

    Article  Google Scholar 

  28. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP westwood: End to end congestion control for wired/wireless networks. Springer Wireless Networks, 8(5), 467–479.

    Article  MATH  Google Scholar 

  29. Ahlswede, R., Cai, N., Li, S. Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

    Article  MATH  MathSciNet  Google Scholar 

  30. Sundararajan, J. K., Shah, D., Medard, M., Mitzenmacher, M., & Barros, J. (2009). Network coding meets TCP. In Proceedings IEEE INFOCOM 2009 (pp. 280–288).

  31. Sundararajan, J. K., Shah, D., Medard, M., Jakubczak, S., Mitzenmacher, M., & Barros, J. (2011). Network coding meets TCP: Theory and implementation. Proceedings of the IEEE, 99(3), 490–512.

    Article  Google Scholar 

  32. Chen, C. C., Chen, C., Park, J. S., Oh, S. Y., Gerla, M., & Sanadidi, M. Y. (2011). Multiple network coding TCP sessions in disruptive wireless scenarios. In Proceedings IEEE MILCOM 2011 (pp. 754–759).

  33. Kim, M., Cloud, J., ParandehGheibi, A., Urbina, L., Fouli, K., Leith, D., & Medard, M. (2014). Congestion control for coded transport layers. In Proceedings IEEE ICC 2014.

  34. Qin, Y., Xu, X., Yang, Y., Zhou, L., & Wang, H. (2011). Joint generation network coding in unreliable wireless networks. In Proceedings IEEE GLOBECOM 2011 (pp. 1–5).

  35. Halloush, M., & Radha, H. (2011). Network coding with multi-generation mixing: A generation framework for practical network coding. IEEE Transactions on Wireless Communication, 10(2), 466–473.

    Article  Google Scholar 

  36. Lin, H. T., Lin, Y. Y., & Kang, H. J. (2013). Adaptive network coding for broadband wireless access networks. IEEE Transactions on Parallel and Distributed Systems, 24(1), 4–18.

    Article  Google Scholar 

  37. Qin, Y., Zhong, X., Yang, Y., Li, L., & Wu, F. (2014). TCPJGNC: A transport control protocol based on network coding for multi-hop cognitive radio networks. Submitted to Elsevier Computer Communications.

  38. Ho, T., Medard, M., Koetter, R., Karger, D., Effros, M., Shi, J., & Leong, B. (2006). A random linear network coding approach to multicast. IEEE Transactions on Information Theory, 52(10), 4413–4430.

    Article  MathSciNet  Google Scholar 

  39. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  40. Network Simulator (ns2). [Online]. http://www.isi.edu/nsnam/ns/

  41. Michigan Technological University. Cognitive radio cognitive network simulator. http://faculty.uml.edu/Tricia_Chigan/Research/CRCN_Simulator.htm

Download references

Acknowledgments

This work was supported by the Science and Technology Fundament Research Fund of Shenzhen under grant JCYJ20140417172417131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiong Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Qin, Y. & Li, L. TCPNC-DGSA: Efficient Network Coding Scheme for TCP in Multi-hop Cognitive Radio Networks. Wireless Pers Commun 84, 1243–1263 (2015). https://doi.org/10.1007/s11277-015-2686-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2686-6

Keywords

Navigation