Skip to main content
Log in

Prototype Design and Implementation of an Automatic Control System Based on a BCI

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, automatic control based on brain–computer interfaces (BCIs) have attracted much attention as a useful tool to control external devices just by a user’s intent. A BCI system detects electrical signals produced from the human brain and converts them into control signals to operate a device by reading the user’s thoughts. In this paper, we propose a prototype of an automatic control system (ACS) that controls vehicle sensors through the application of a BCI to a vehicle system for remote sensor control. The proposed system is designed and implemented using several components, including a BCI device, a server system, a smart app, and a car control panel, so that it can be applied to smart car operations. The BCI device is used to transmit a user’s brain waves through an Arduino UNO board to a server system and it also provides a Bluetooth interface. The server system receives digital brain wave signals from the BCI device and presents them in a graph. The smart app receives normalized brain waves from the server system by the Bluetooth protocol and controls the smart car through a control panel by using brain wave information. The control panel of the smart car uses an ATMega128 board to operate the vehicle based on commands from the smart app through Bluetooth. The proposed BCI-based automatic control system (B-ACS) can be applied to short-range transport models for disabled users and it is expected to be of great assistance in improving the quality of their daily lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Schalk, G., McFarland, D. J., Hiterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 51(6), 1034–1043.

    Article  Google Scholar 

  2. Zhang, B., Wang, J., & Fuhlbrigge, T. (2010). A review of the commercial bain-computer interface technology from perspective of industrial robotics. In Proceedings Of the IEEE international conference on automation and logistics (pp. 379–384).

  3. Long, J., Li, Y., Wang, H., Yu, T., Pan, J., & Li, F. (2012). A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 720–729.

    Article  Google Scholar 

  4. Oum, K., Ayaz, H., Shewokis, P. A., & Diefenbach, P. (2010). MindTactics: A brain computer interface gaming platform. In Proceedings Of 2010 2nd international IEEE consumer electronics society’s games innovation conference (pp. 1–5).

  5. Eleni, A. (2008). Control of medical robotics and neurorobotic prosthetics by non-invasive brain-robot interfaces via EEG and RFID technology. In Proceedings of 8th IEEE international conference on bioinformatics and bioengineering (pp. 1–4).

  6. Zander, T. O., & Kothe, C. (2011). Towards passive BCI: Applying BCI technology for human-machine systems in general. Journal of Neural Engineering, 8(2), 025005.

  7. Blankertz, B., Dornhege, G., Krauledat, M., Curio, G., & Müller, K.-R. (2007). The noninvasive Berlin brain-computer interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2), 539–550.

    Article  Google Scholar 

  8. Niedermeyer, E., & da Silva F.L. (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincot Williams and Wilkins. ISBN 0-7817-5126-8.

  9. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Müller, K.-R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56.

  10. Herwig, U., Schönfeldt-Lecuona, C., Wunderlich, A. P., von Tiesenhausen, C., Thielscher, A., Walter, H., et al. (2001). The navigation of transcranial magnetic stimulation. Psychiatry Research: Neuroimaging, 108(2), 123–131.

    Article  Google Scholar 

  11. Herwig, U., Schönfeldt-Lecuona, C., Wunderlich, A. P., Kölbel, K., Thielscher, A., von Tiesenhausen, C., et al. (2002). Spatial correspondence of neuronavigated transcranial magnetic stimulation and functional neuroimaging. Clinical Neurophysiology, 113(4), 42–48.

    Article  Google Scholar 

  12. Hoffman, R. E., Boutros, N. N., Hu, S., Berman, R. M., Krystal, J. H., & Charney, D. S. (2000). Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet, 25, 355(9209), 1073–1075.

    Article  Google Scholar 

  13. Loeb, G. E., Allison, B. Z., Donchin, E., Nascimento, O. F., Heetderks, W. J., Nijboer, F., et al. (2006). BCI meeting 2005-workshop on signals and recording methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 138–141.

    Article  Google Scholar 

  14. Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (2004). A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1(2), 63–71.

    Article  Google Scholar 

  15. Wolpaw, J. R., & McFarland, D. J. (2004). Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 101(5), 17849–17854.

    Article  Google Scholar 

  16. Lecuyer, A., Lotte, F., Reilly, R. B., Leeb, R., Hirose, M., & Slater, M. (2008). Brain-computer interfaces, virtual reality, and videogames. Computer, IEEE Computer Society, 41(10), 66–72.

  17. Bos, D.P.-O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M., et al. (2010). Human-computer interaction for BCI games. In Proceedings of 2010 International conference on cyberworlds (pp. 277–281).

  18. Bos, D. P.-O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M., et al. (2010). Brain–computer interfacing and games. BRAIN–COMPUTER INTERFACES Human–Computer Interaction Series, Part, 2, 149–178.

    Google Scholar 

  19. Gürkök, H., & Nijholt, A. (2012). Brain–computer interfaces for multimodal interaction: A survey and principles. International Journal of Human–Computer Interaction, 28(5), 292–307.

    Article  Google Scholar 

  20. Wolpaw, J. R., McFarlanda, D. J., Neatb, G. W., & Fornerisa, C. A. (1991). An EEG-based brain–computer interface for cursor contro. Electroencephalography and Clinical Neurophysiology, 78(3), 252–259.

    Article  Google Scholar 

  21. McFarland, D. J., Sarnacki, W. A., & Wolpaw, J. R. (2010). Electroencephalographic (EEG) control of three-dimensional movement. Journal of Neural Engineering, 7(3), 036007.

  22. Babak, A. Taheri, Robert, T. K., & Rosemary, L. S. (May 1994). A dryelectrode for EEG recording. Electroencephalography and Clinical Neurophysiology, 90(5), 376–383.

  23. Gargiulo G., Bifulco P., Calvo R. A., Cesarelli M., Jin C., & Schaik A. (2008). A mobile EEG system with dry electrodes. In Biomedical circuits and systems conference, BioCAS. IEEE (pp. 273–276), 2008.

  24. Gonzalez-Velasco, E.A. (1992). Connections in mathematical analysis: The case of Fourier series. American Mathematical Monthly, 99(5), 427–441.

  25. http://developer.neurosky.com.

  26. http://www.microsoft.com/ko-kr/download/details.aspx?id=17851.

  27. http://sourceforge.net/projects/zedgraph/.

  28. http://developer.android.com/about/versions/android-4.1.html.

  29. http://www.khronos.org/news/press/khronos-releases-opengl-4.4-specification.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Gwon Kang.

Additional information

This work was supported by the Soonchunhyang University Research Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SJ., Kang, BG. Prototype Design and Implementation of an Automatic Control System Based on a BCI. Wireless Pers Commun 79, 2551–2563 (2014). https://doi.org/10.1007/s11277-014-1861-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1861-5

Keywords

Navigation