Skip to main content
Log in

Hardware Simulator Design for MIMO Propagation Channel on Shipboard at 2.2 GHz

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A wireless communication system can be tested either in actual conditions or with a hardware simulator reproducing actual conditions. With a hardware simulator it is possible to freely simulate a desired radio channel, making it possible to test “on table” mobile radio equipments. This paper presents new architectures for the digital block of a hardware simulator of MIMO propagation channels. This simulator can be used for LTE and WLAN IEEE 802.11ac applications, in indoor and outdoor environments. However, in this paper, specific architectures of the digital block of the simulator for shipboard environment are presented. A hardware simulator must reproduce the behavior of the radio propagation channel. Thus, a measurements campaign has been conducted to obtain the impulse responses of the shipboard channel using a channel sounder designed and realized at IETR. After the presentation of the channel sounder, the channel impulse responses are described and implemented. Then, the new architectures of the digital block of the hardware simulator, implemented on a Xilinx Virtex-IV FPGA are presented. The accuracy, the occupation on the FPGA and the latency of the architectures are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Behbahani, S., Merched, R., & Eltawil, A. (2008). Optimizations of a MIMO relay network. IEEE Transactions on Signal Processing, 56(10), 5062–5073.

    Article  MathSciNet  Google Scholar 

  2. Cetiner, A., Sengul, E., Akay, E., & Ayanoglu, E. (2006). A MIMO system with multifunctional reconfigurable antennas. IEEE Antennas Wireless Propagation Letters, 5(1), 463–466.

    Article  Google Scholar 

  3. Xilinx: FPGA, CPLD and EPP solutions. www.xilinx.com.

  4. Picol, S., Zaharia, G., Houzet, D., & El Zein, G. (2006). Design of the digital block of a hardware simulator for MIMO radio channels. IEEE PIMRC Helsinki, Finland.

  5. Erceg, V., Shumacher, L., Kyritsi, P., et al. (May 10, 2004). TGn Channel Models. IEEE 802.11-03/940r4.

  6. Agilent Technologies. (2008). Advanced design system—LTE channel model—R4–070872 3GPP TR 36.803 v0.3.0.

  7. Farhat, H., Cosquer, R., Grunfelder, G., Le Coq, L., & El Zein, G. (May 2008). A dual band MIMO channel sounder at 2.2 and 3.5 GHz. Instrumentation and measurement technology conference proceedings. Victoria, BC, Canada.

  8. Almers, P., Bonek, E., et al. (2007). Survery of channel and radio propagation models for wireless MIMO systems. EURASIP Journal on Wireless Communications and Networking. Article ID 19070.

  9. Salz, J., & Winters, J. H. (1994). Effect of fading correlation on adaptive arrays in digital mobile radio. IEEE Transactions on Vehicular Technology, 43(4), 1049–1057.

    Article  Google Scholar 

  10. Schumacher, L., Pedersen, K. I., & Mogensen, P. E. (Sept. 2002). From antenna spacings to theoretical capacities—guidelines for simulating MIMO systems. In Proceedings of PIMRC conference (Vol. 2, pp. 587–592).

  11. Wireless Channel Emulator. (2006). Spirent communications.

  12. Baseband Fading Simulator ABFS. (1999). Reduced costs through baseband simulation. Rohde and Schwarz

  13. Murphy, P., Lou, F., Sabharwal, A., & Frantz, P. (2003). An FPGA based rapid prototyping platform for MIMO systems. Asilomar Conference on Signals, Systems and Computers, ACSSC, 1, 900–904.

    Google Scholar 

  14. Murphy, P., Lou, F., & Frantz, J. P. (Oct. 2003). A hardware testbed for the implementation and evaluation of MIMO algorithms. Singapore: Conference on Mobile and Wireless Communications Networks.

  15. Buscemi, S., & Sass, R. (Nov. 2011). Design of a scalable digital wireless channel Emulator for networking radios. Military Communications Conference, MILCOM Charleston, SC, USA.

  16. Vizireanu, D. N., & Halunga, S. V. (2011). Single sine wave parameters estimation method based on four equally spaced samples. International Journal of Electronics, 98(7), 941–948.

    Article  Google Scholar 

  17. Vizireanu, D. N., Halunga, S. V. (April 2012). Simple, Fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation. Journal of Instrumentation, JINST, 7, 1–10, P04001.

  18. Picol, S., Zaharia, G., Houzet, D., & El Zein, G. (Sept. 2008). Hardware simulator for MIMO radio channels: Design and features of the digital block. Proceedings of IEEE VTC-Fall Calgary, Canada.

  19. Umansky, D., & Patzold, M. (Nov. 2009). Design of measurement-based stochastic wideband MIMO channel simulators. IEEE Globecom Honolulu.

  20. Eslami, H., Tran, S. V., & Eltawil, A. M. (2009). Design and implementation of a scalable channel Emulator for wideband MIMO systems. IEEE Transaction on Vehicular Technology, 58(9), 4698–4708.

    Article  Google Scholar 

  21. Fouladi, S. F., Alimohammad, A., Cockburn, B., & Schlegel, C. (2009). A single FPGA filter-based multipath fading emulator. Honolulu: Globecom.

    Google Scholar 

  22. Eshtawie, M. A. M., & Othman, M. B. (2007). An algorithm proposed for FIR Filter coefficients representation. World Academy of Science, Engineering and Technology.

  23. Habib, B., Zaharia, G., & El Zein, G. (June 2011). Improved frequency domain architecture for the digital Block of a hardware simulator for MIMO radio channels. PIEEE ISSCS Iasi, Romania.

  24. Habib, B., Zaharia, G., & El Zein, G. (May 2012). MIMO hardware simulator: Digital block design for 802.11ac applications with TGn channel model test. IEEE VTC Spring Yokohama, Japan.

  25. Habib, B., Zaharia, G., & El Zein, G. (June 2012). Digital block sesign of MIMO hardware simulator for LTE applications. IEEE ICC, Ottawa, Canada.

  26. Borries, K., Anderson, E., & Steenkiste, P. (Sept. 2011). Network-scale emulation of general wireless channels. IEEE VTC Fall San Francisco, USA.

  27. Roy, R., & Kailath, T. (1987). ESPRIT—Estimation of signal parameters via rotational invariance techniques. IEEE Transaction on Acoustics, Speech and Signal Processing, 37(7), 984–995.

    Article  Google Scholar 

  28. Fressler, J. A., & Hero, A. O. (1994). Space-alternating generalized expectation-maximization algorithm. IEEE Transaction on Signal Processing, 42(10), 2664–2677.

    Article  Google Scholar 

  29. Kermoal, J. P., Schumacher, L., Pedersen, K. I., Mogensen, P. E., & Frederiksen, F. (2002). A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Areas of Communications, 20(6), 1211–1226.

    Article  Google Scholar 

  30. Jakes, W. C. (1975). Microwave mobile communications. New York: Wiley & Sons.

    Google Scholar 

  31. Spencer, Q. H., et al. (2000). Modeling the statistical time and angle of arrival characteristics of an indoor environment. IEEE Journal on Selected Areas Communications, 18(3), 347–360.

    Article  Google Scholar 

  32. Chong, C-C., Laurenson, D. I., & McLaughlin, S. (Sept. 2002). Statistical characterization of the 5.2 GHz wideband directional indoor propagation channels with clustering and correlation properties. IEEE VTC Fall, Vancouver, Canada.

  33. ModelSim—Advanced Simulation and Debugging. http://model.com.

Download references

Acknowledgments

The authors would like to thank the “Région Bretagne” for its financial support of this work which is a part of PALMYRE-II project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bachir Habib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habib, B., Farhat, H., Zaharia, G. et al. Hardware Simulator Design for MIMO Propagation Channel on Shipboard at 2.2 GHz. Wireless Pers Commun 71, 2535–2561 (2013). https://doi.org/10.1007/s11277-012-0954-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0954-2

Keywords

Navigation