Skip to main content

Advertisement

Log in

CCP-federated deep learning based on user trust chain in social IoV

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Federated learning is widely used in the context of wireless networks to protect sensitive user data. However, centralized federated learning encounters some issues when applied to the Social Internet of Vehicles, specifically low communication efficiency and high computational cost. In order to alleviate communication bottlenecks and protect vehicle user data privacy, we herein propose the Conditional Choice Probability-Federated Deep Learning algorithm based on user trust chain. This algorithm introduces inter-user trust elements to characterize the vehicle connection network from a vehicle-user relationship perspective. It computes the node conditional choice trust probability based on the single-way trust atomic chain and circular chain of user nodes. Local model interactions are then performed to complete the decentralized federated deep learning framework. Experiments are conducted to verify the robustness of the proposed algorithm's conditional choice probability estimation and confirm that decentralized federated deep learning is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vegni, A. M., & Loscri, V. (2015). A survey on vehicular social networks. IEEE Communications Surveys & Tutorials, 17(4), 2397–2419. https://doi.org/10.1109/COMST.2015.2453481

    Article  Google Scholar 

  2. Gao, Honghao, Liu, Can, Li, Youhuizi, & Yang, Xiaoxian. (2020). V2VR: Reliable hybrid-network-oriented V2V data transmission and routing considering RSUs and connectivity probability. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3533–3546. https://doi.org/10.1109/TITS.2020.2983835

    Article  Google Scholar 

  3. Zhou, W., Xing, L., Xia, J., Fan, L., & Nallanathan, A. (2021). Dynamic computation offloading for MIMO mobile edge computing systems with energy harvesting. IEEE Transactions on Vehicular Technology, 70(5), 5172–5177. https://doi.org/10.1109/TVT.2021.3075018

    Article  Google Scholar 

  4. Vegni, A. M., Souza, C., Loscri, V., Hernandez-Orallo, E., & Manzoni, P. (2019). Data transmissions using hub nodes in vehicular social networks. IEEE Transactions on Mobile Computing., 19(7), 1570–1585. https://doi.org/10.1109/TMC.2019.2928803

    Article  Google Scholar 

  5. Jia, X., Xing, L., Gao, J., & Honghai, W. (2020). A survey of location privacy preservation in social internet of vehicles. IEEE Access, 8, 201966–201984. https://doi.org/10.1109/ACCESS.2020.3036044

    Article  Google Scholar 

  6. Xue, B., He, Y., Jing, F., Ren, Y., Jiao, L., & Huang, Y. (2021). Robot target recognition using deep federated learning. International Journal of Intelligent Systems. https://doi.org/10.1002/int.22606

    Article  Google Scholar 

  7. Gao, H., Zhang, Y., Miao, Hu., Durán, R. J., & Barroso, X. Y. (2021). SDTIOA: Modeling the timed privacy requirements of iot service composition: a user interaction perspective for automatic transformation from BPEL to timed automata. Mobile Networks and Applications. https://doi.org/10.1007/s11036-021-01846-x

    Article  Google Scholar 

  8. Zhang, H., Xie, Z., Zarei, R., Wu, T., & Chen, K. (2021). Adaptive client selection in resource constrained federated learning systems: A deep reinforcement learning approach. IEEE Access, 9, 98423–98432. https://doi.org/10.1109/ACCESS.2021.3095915

    Article  Google Scholar 

  9. Zhang, Y., Mou, Z., Gao, F., Xing, L., Jiang, J., & Han, Z. (2020). Hierarchical deep reinforcement learning for backscattering data collection with multiple UAVs. IEEE Internet of Things Journal, 8(5), 3786–3800.

    Article  Google Scholar 

  10. Hao M, Li H, Xu G, Liu S, & Yang H. (2019). Towards efficient and privacy-preserving federated deep learning. IEEE International Conference on Communications (IEEE ICC). c31201213c653abb.

  11. Zhang L, Yin H, Zhou Z, Roy S, & Sun Y. (2020). Enhancing WiFi multiple access performance with federated deep reinforcement learning. 92nd IEEE Vehicular Technology Conference (IEEE VTC-Fall). https://doi.org/10.1109/VTC2020-Fall49728.9348485.

  12. Nasaruddin, N., Muchtar, K., & Afdhal, A. (2019). A lightweight moving vehicle classification system through attention-based method and deep learning. IEEE Access, 7, 157564–157573. https://doi.org/10.1109/ACCESS.2019.2950162

    Article  Google Scholar 

  13. Kim, H., Park, J., Bennis, M., & Kim, S. L. (2020). Blockchained on-device federated learning. IEEE Communications Letters, 24(6), 1279–1283. https://doi.org/10.1109/LCOMM.2019.2921755

    Article  Google Scholar 

  14. Qi, Y., Hossain, M. S., Nie, J., & Li, X. (2021). Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems, 117(2946), 328–337. https://doi.org/10.1016/j.future.2020.12.003

    Article  Google Scholar 

  15. Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q., & Poor, H. V. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 15, 3454–3469. https://doi.org/10.1109/TIFS.2020.2988575

    Article  Google Scholar 

  16. Li, Y., Zhang, Z., Zhang, Z., & Kao, Y. C. (2020). Secure federated learning with efficient communication in vehicle network. Journal of Internet Technology, 21(7), 2075–2084. https://doi.org/10.3966/160792642020122107022

    Article  Google Scholar 

  17. Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., & Agüera y Arcas, B. (2017). Communication-efficient learning of deep networks from decentralized data.54: 1273–1282.

  18. Wenchen, H., Guo, S., Qiu, X., Liandong, C., & Zhang, S. (2021). Federated learning node selection method based on DRL. Journal of Communications., 42(06), 62–71.

    Google Scholar 

  19. Yu, S., Chen, X., Zhou, Z., Gong, X., & Wu, D. (2020). When deep reinforcement learning meets federated learning: intelligent multi-timescale resource management for multi-access edge computing in 5g ultra dense network. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3026589

    Article  Google Scholar 

  20. Liu, H., Zhang, P., Pu, G., Yang, T., & Zhang, Y. (2020). Blockchain empowered cooperative authentication with data traceability in vehicular edge computing. IEEE Transactions on Vehicular Technology., 69(4), 4221–4232.

    Article  Google Scholar 

  21. Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., & Hossain, M. (2021). Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Transactions on Intelligent Transportation Systems, 22(8), 5341–5351.

    Article  Google Scholar 

  22. Olowononi, F. O., Rawat, D. B., & Liu, C, (2021). Federated learning with differential privacy for resilient vehicular cyber physical systems. 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), pp. 1–5, https://doi.org/10.1109/CCNC49032.2021.9369480.

  23. Ye, D., Yu, R., Pan, M., & Han, Z. (2020). Federated learning in vehicular edge computing: A selective model aggregation approach. IEEE Access, 8, 23920–23935. https://doi.org/10.1109/ACCESS.2020.2968399

    Article  Google Scholar 

  24. Boualouache, A., & Engel, T. (2021). Federated learning-based scheme for detecting passive mobile attackers in 5G vehicular edge computing. Annals of Telecommunications. https://doi.org/10.1007/S12243-021-00871-X

    Article  Google Scholar 

  25. Li, Z. H., Yu, H. F., Zhou, T. Y., Luo, L., & Fan, M. C. (2021). Byzantine resistant secure blockchained federated learning at the edge. IEEE Network., 35(4), 295–301.

    Article  Google Scholar 

  26. Cao, M., Zhang, L., & Cao, B. (2021). Toward on-device federated learning: A direct acyclic graph-based Blockchain approach. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3105810

    Article  Google Scholar 

  27. Raj J. T. (2020). Building decentralized image classifiers with federated learning. IEEE-Region-10 Symposium (TENSYMP) - Technology for Impactful Sustainable Development.489–494.https://doi.org/10.1109/TENSYMP50017.2020.9230771.

  28. Pokhrel, S. R., & Choi, J. (2020). Federated learning with blockchain for autonomous vehicles: Analysis and design. IEEE Transactions on Communications., 68(8), 4734–4746. https://doi.org/10.1109/TCOMM.2020.2990686

    Article  Google Scholar 

  29. Yuan, P., & Huang, R. (2021). Integrating the device-to-device communication technology into edge computing: A case study[J]. Peer-to-Peer Networking and Applications, 14(2), 599–608. https://doi.org/10.1007/s11036-021-01846-x

    Article  MathSciNet  Google Scholar 

  30. Wu, H., Fan, Y., Wang, Y., Ma, H., & Xing, L. (2021). A comprehensive review on edge caching from the perspective of total process: Placement, policy and delivery. Sensors, 21, 5033. https://doi.org/10.3390/s21155033

    Article  Google Scholar 

  31. Xing, L., Jia, X., Gao, J., & Wu, H. (2021). A location privacy protection algorithm based on double K-anonymity in the social internet of vehicles. IEEE Communications Letters., 25(10), 3199–3203.

    Article  Google Scholar 

  32. Ma, X., Xu, H., Gao, H., & Bian, M. (2021). Real-time multiple-workflow scheduling in cloud environment. Journal of Cloud Computing. https://doi.org/10.21203/rs.3.rs-170491/v1

    Article  Google Scholar 

  33. Yuan, P., Fan, L., Liu, P., & Tang, S. (2016). Recent progress in routing protocols of mobile opportunistic networks: A clear taxonomy, analysis and evaluation. Journal of Network and Computer Applications, 62, 163–170.

    Article  Google Scholar 

  34. Tan, C., Bei, S., Jing, Z., & Xiong, N. (2021). An atomic cross-chain swap-based management system in vehicular Ad hoc networks. Wireless Communications and Mobile Computing, 2021(7), 25. https://doi.org/10.1155/2021/6679654

    Article  Google Scholar 

  35. Zakhary, V., Agrawal, D., & Abbadi, A. E. (2019). Atomic commitment across Blockchains. Proceedings of the Vldb Endowment, 13(9), 1319–1331.

    Article  Google Scholar 

  36. Seo, H., Park, J., Bennis, M., & Choi, W. (2021). Communication and consensus co-design for distributed, low-latency, and reliable wireless systems. IEEE Internet of Things Journal., 8(1), 129–143. https://doi.org/10.1109/JIOT.2020.2997596

    Article  Google Scholar 

  37. Zhang, Y., Lu, Y., Huang, X., Zhang, K., & Maharjan, S. (2020). Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Transactions on Vehicular Technology., 69(4), 4298–4311. https://doi.org/10.1109/TVT.2020.2973651

    Article  Google Scholar 

  38. Li, S., Xue, M., Zhao, B., Zhu, H., & Zhang, X. (2020). Invisible backdoor attacks on deep neural networks via steganography and regularization. IEEE Transactions on Dependable and Secure Computing., 18(5), 2088–2015.

    Google Scholar 

  39. Zhang, Y. Y., Shang, J., Chen, X., & Liang, K. (2020). A self-learning detection method of Sybil attack based on LSTM for electric vehicles. Energies, 13(6), 1–15.

    Article  Google Scholar 

  40. Agrawal, S., Das, M. L., & Lopez, J. (2019). Detection of node capture attack in wireless Sensor networks. IEEE Systems Journal., 13(1), 238–247. https://doi.org/10.1109/JSYST.2018.2863229

    Article  Google Scholar 

  41. Wu, S., Chen, J., Zhou, W., Iqbal, J., & Yao, L. (2019). A modified Logit model for assessment and validation of debris-flow susceptibility. Bulletin of Engineering Geology and the Environment, 78(6), 4421–4438.

    Article  Google Scholar 

  42. Zhu, Q., Zheng, Y., & Li, G. (2018). Linear double autoregression. Journal of Econometrics., 207(1), 162–174. https://doi.org/10.1016/j.jeconom.2018.05.006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, PC., Huang, YH., Zhang, DX. et al. CCP-federated deep learning based on user trust chain in social IoV. Wireless Netw 29, 1555–1566 (2023). https://doi.org/10.1007/s11276-021-02870-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02870-1

Keywords

Navigation