Skip to main content

Advertisement

Log in

Multistage fuzzy logic congestion-aware routing using dual-stage notification and the relative barring distance in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Congestion management in a wireless sensor network (WSN) is a key determinant of the quality of service. Congestion in a network causes data loss, a reduced transmission rate, increased delays, and excess energy consumption. The latter has a direct impact on tiny sensor devices with limited resources and processing, buffering, and transmitting capabilities. In addition, a WSN relies on multiple packet relays between nodes, which inevitably results in network congestion near the base station, whose neighboring nodes incur crowded traffic from multisource deliveries. Thus, this paper proposes a novel routing method that minimizes congestion. The adaptive routing strategy consists of 3 main modules. First, an optimal notification level for queue control is specified by using multistage fuzzy logic (MFL). The resulting weights evaluated from congestion-related parameters are then passed onto the subsequent modules. The second module adjusts the congestion notification, which makes the module more flexible to improve its routing discovery efficiency and to reduce the chance of loss during the rerouting stage. Finally, we propose a routing adjustment and control mechanism by using a novel navigation technique based on linear and angular distances and MFL to create weights for path assessment. Simulation results demonstrate that the proposed method outperforms the state-of-the-art methods in terms of the packet loss ratio, average hop count, network lifetime, and energy consumption metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. International Telecommunication Union. (2016). Harnessing the Internet of Things for global development. Geneva.

  2. Laurence, G. (2019). Gartner says 5.8 billion enterprise and automotive IoT endpoints will be in use in 2020. Gartner Inc. [Online]. Retrieved January 25, 2020 from https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io.

  3. Riaz, A. (2018). IoTs—overview of the ecosystem. Retrieved January 25, 2020 from https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/Documents/Events/2018/IoT-BDG/Day1-IoT-Aamir.pdf.

  4. Lopez, J., Rios, R., Bao, F., & Wang, G. (2017). Evolving privacy: From sensors to the Internet of Things. Future Generation Computing Systems, 75, 46–57.

    Article  Google Scholar 

  5. Yetgin, H., Cheung, K. T. K., El-Hajjar, M., & Hanzo, L. (2017). A survey of network lifetime maximization techniques in wireless sensor networks. IEEE Communications Surveys and Tutorials, 19(2), 828–854.

    Article  Google Scholar 

  6. Pham, Q. V., & Hwang, W. J. (2017). Network utility maximization-based congestion control over wireless networks: a survey and potential directives. IEEE Communications Surveys and Tutorials, 19(2), 1173–1200.

    Article  Google Scholar 

  7. Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: challenges and design requirements. IEEE Access, 5, 1872–1899.

    Article  Google Scholar 

  8. Modieginyane, K. M., Letswamotse, B. B., Malekian, R., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering, 66, 274–287.

    Article  Google Scholar 

  9. Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks Journal, 67, 104–122.

    Article  Google Scholar 

  10. Jan, M. A., Jan, S. R. U., Alam, M., Akhunzada, A., & Rahman, I. U. (2018). A comprehensive analysis of congestion control protocols in wireless sensor networks. Mobile Networks and Applications, 23(3), 456–468.

    Article  Google Scholar 

  11. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.

    Article  Google Scholar 

  12. Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.

    Article  Google Scholar 

  13. Shah, S. A., Nazir, B., & Khan, I. A. (2017). Congestion control algorithms in wireless sensor networks: Trends and opportunities. Journal of King Saud University, 29(3), 236–245.

    Google Scholar 

  14. Al-Saadi, R., Armitage, G., But, J., & Branch, P. (2019). A survey of delay-based and hybrid TCP congestion control algorithms. IEEE Communications Surveys and Tutorials, 21(4), 3609–3638.

    Article  Google Scholar 

  15. Xu, C., Zhao, J., & Muntean, G. M. (2016). Congestion control design for multipath transport protocols: A survey. IEEE Communications Surveys and Tutorials, 18(4), 2948–2969.

    Article  Google Scholar 

  16. Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16(4), 1839–1859.

    Article  Google Scholar 

  17. Bohloulzadeh, A., & Rajaei, M. (2020). A survey on congestion control protocols in wireless sensor networks. International Journal of Wireless Information Networks, 27(3), 365–384.

    Article  Google Scholar 

  18. Gherbi, C., Aliouat, Z., & Benmohammed, M. (2017). A survey on clustering routing protocols in wireless sensor networks. Sensor Review, 37(1), 12–25.

    Article  Google Scholar 

  19. Pratama, A., Munadi, R., & Mayasari, R. (2018). Design and implementation of flood detector using wireless sensor network with mamdani’s fuzzy logic method. In Proceedings2017 2nd international conferences on information technology, information systems and electrical engineering, ICITISEE 2017 (vol. 2018-January, pp. 192–197).

  20. Aguirre, E., Lopez-Iturri, P., Azpilicueta, L., Astrain, J. J., Villadangos, J., Santesteban, D., & Falcone, F. (2016). Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios. Sensors, 16(9), 1–20.

    Article  Google Scholar 

  21. Yu, F., He, Z., & Xu, N. (2019). Autonomous navigation for GPS using inter-satellite ranging and relative direction measurements. Acta Astronautica, 160, 646–655.

    Article  Google Scholar 

  22. Stegagno, P., Cognetti, M., Oriolo, G., Bulthoff, H. H., & Franchi, A. (2016). Ground and Aerial mutual localization using anonymous relative-bearing measurements. IEEE Transactions on Robotics, 32(5), 1133–1151.

    Article  Google Scholar 

  23. Ren, F., He, T., Das, S. K., & Lin, C. (2011). Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1585–1599.

    Article  Google Scholar 

  24. Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In SenSys’03: Proceedings of international conference on embedded network sensor systems (pp. 14–27).

  25. Tan, D. D., Dinh, N. Q., & Kim, D. S. (2013). GRATA: Gradient-based traffic-aware routing for wireless sensor networks. IET Wireless Sensor Systems, 3(2), 104–111.

    Article  Google Scholar 

  26. Gholipour, M., Haghighat, A. T., & Meybodi, M. R. (2015). Hop-by-hop traffic-aware routing to congestion control in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 15.

    Article  Google Scholar 

  27. Farzaneh, N., & Yaghmaee, M. H. (2015). An adaptive competitive resource control protocol for alleviating congestion in wireless sensor networks: An evolutionary game theory approach. Wireless Personal Communications, 82(1), 123–142.

    Article  Google Scholar 

  28. Ding, W., Tang, L., & Ji, S. (2016). Optimizing routing based on congestion control for wireless sensor networks. Wireless Networks, 22(3), 915–925.

    Article  Google Scholar 

  29. Tang, L., Liu, H., & Yan, J. (2017). Gravitation theory based routing algorithm for active wireless sensor networks. Wireless Personal Communications, 97(1), 269–280.

    Article  Google Scholar 

  30. Raman, C. J., & James, V. (2019). FCC: Fast congestion control scheme for wireless sensor networks using hybrid optimal routing algorithm. Cluster Computing, 22, 12701–12711.

    Article  Google Scholar 

  31. Izadi, D., Abawajy, J., & Ghanavati, S. (2013). Fuzzy logic optimized wireless sensor network routing protocol. Journal of High Speed Networks, 19(2), 115–128.

    Article  Google Scholar 

  32. Hatamian, M., Bardmily, M. A., Asadboland, M., Hatamian, M., & Barati, H. (2016). Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering, 25(1), 114–123.

    Article  Google Scholar 

  33. Sangeetha, G., Vijayalakshmi, M., Ganapathy, S., & Kannan, A. (2020). An improved congestion-aware routing mechanism in sensor networks using fuzzy rule sets. Peer-to-Peer Networking and Applications, 13(3), 890–904.

    Article  Google Scholar 

  34. Chen, F., Wang, N., German, R., & Dressler, F. (2010). Simulation study of IEEE 802.15.4 LR-WPAN for industrial applications. Wireless Communications and Mobile Computing, 10(5), 609–621.

    Google Scholar 

  35. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  36. Tamandani, Y. K., & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Network, 22(2), 647–653.

    Article  Google Scholar 

  37. Taheri, H., Neamatollahi, P., Younis, O. M., Naghibzadeh, S., & Yaghmaee, M. H. (2012). An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Networks, 10(7), 1469–1481.

    Article  Google Scholar 

  38. Hosseini, S. S., & Noorossana, R. (2018). Performance evaluation of EWMA and CUSUM control charts to detect anomalies in social networks using average and standard deviation of degree measures. Quality and Reliability Engineering International, 34(4), 477–500.

    Article  Google Scholar 

  39. Tang, A., Castagliola, P., Sun, J. S., & Hu, X. L. (2018). The effect of measurement errors on the adaptive EWMA chart. Quality and Reliability Engineering International, 34(4), 609–630.

    Article  Google Scholar 

  40. Luo, J., Panchard, J., Piórkowski, M., Grossglauser, M., & Hubaux, J. P. (2006). MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 4026, pp. 480–497). LNCS.

  41. Kim, Y. H., Ahn, S. C., & Kwon, W. H. (2000). Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets and Systems, 111(2), 215–224.

    Article  MathSciNet  Google Scholar 

  42. Fall, K., & Varadhan, K. (2007). The network simulator NS-2. Retrieved January 25, 2020 from https://www.isi.edu/nsnam/ns/doc/index.html.

  43. Manna Research Group. (2010). Mannasim framework [Online]. Retrieved January 25, 2020 from http://www.mannasim.dcc.ufmg.br/index.htm.

  44. Eaton, J. W., Bateman, D., & Hauberg, S. (1997). Gnu octave. London: Network Theory.

    Google Scholar 

  45. DataSheet, MICAz. (2009). Crossbow technology inc. Retrieved January 25, 2020 from http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.

  46. Naeve, M., et al. (2002). Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks. IEEE Communications Magazine, 40(8), 70–77.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Thailand Science Research and Innovation (TSRI) and the National Research Council of Thailand (NRCT) via the International Research Network Program (IRN61W0006) and by Khon Kaen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakchai So-In.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aimtongkham, P., Horkaew, P. & So-In, C. Multistage fuzzy logic congestion-aware routing using dual-stage notification and the relative barring distance in wireless sensor networks. Wireless Netw 27, 1287–1308 (2021). https://doi.org/10.1007/s11276-020-02513-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02513-x

Keywords

Navigation