Skip to main content
Log in

Novel primers to identify a wider diversity of butyrate-producing bacteria

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Butyrate-producing bacteria are a functionally important part of the intestinal tract flora, and the resulting butyric acid is essential for maintaining host intestinal health, regulating the immune system, and influencing energy metabolism. However, butyrate-producing bacteria have not been defined as a coherent phylogenetic group. They are primarily identified using primers for key genes in the butyrate-producing pathway, and their use has been limited to the Bacillota and Bacteroidetes phyla. To overcome this limitation, we developed functional gene primers able to identify butyrate-producing bacteria through the butyrate kinase gene, which encodes the enzyme involved in the final step of the butyrate-producing pathway. Genomes extracted from human and rat feces were used to amplify the target genes through PCR. The obtained sequences were analyzed using BLASTX to construct a developmental tree using the MEGA software. The newly designed butyrate kinase gene primers allowed to recognize a wider diversity of butyrate-producing bacteria than that recognized using currently available primers. Specifically, butyrate-producing bacteria from the Synergistota and Spirochaetota phyla were identified for the first time using these primers. Thus, the developed primers provide a more accurate method for researchers and doctors to identify potential butyrate-producing bacteria and deepen our understanding of butyrate-producing bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request

References

  • Adamberg K, Raba G, Adamberg S (2020) Use of changestat for growth rate studies of gut microbiota. Front Bioeng Biotechnol 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Alharris E, Mohammed A, Alghetaa H, Zhou J, Nagarkatti M, Nagarkatti P (2022) The ability of resveratrol to attenuate ovalbumin-mediated allergic Asthma is associated with changes in microbiota involving the gut-lung axis, enhanced barrier function and decreased inflammation in the lungs. Front Immunol 13:805770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atasoy M, Eyice O, Cetecioglu Z (2020) A comprehensive study of volatile fatty acids production from batch reactor to anaerobic sequencing batch reactor by using cheese processing wastewater. Bioresour Technol 311:123529

    Article  CAS  PubMed  Google Scholar 

  • Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van den Abbeele P (2023) HMOs exert marked Bifidogenic effects on Children’s gut Microbiota Ex vivo, due to Age-Related Bifidobacterium species Composition. Nutrients 15:1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burckhardt JC, Chong DH, Pett N, Tropini C (2023) Gut commensal enterocloster species host inoviruses that are secreted in vitro and in vivo. Microbiome 11:1–16

    Article  Google Scholar 

  • Chai L-J et al (2019) Profiling the Clostridia with butyrate-producing potential in the mud of Chinese liquor fermentation cellar. Int J Food Microbiol 297:41–50

    Article  CAS  PubMed  Google Scholar 

  • Charrier C et al (2006) A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. Microbiology 152:179–185

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2020) Butyrate-producing bacteria and the gut-heart axis in Atherosclerosis. Clin Chim Acta 507:236–241

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2022) Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J Experimental Clin Cancer Res 41:1–21

    Article  Google Scholar 

  • Cho HM et al (2020) Stimbiotic supplementation improved performance and reduced inflammatory response via stimulating fiber fermenting microbiome in weaner pigs housed in a poor sanitary environment and fed an antibiotic-free low zinc oxide diet. PLoS ONE 15:e0240264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SI et al (2021) Changes in cecal microbiota and short-chain fatty acid during lifespan of the rat. J Neurogastroenterol Motil 27:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong J-N et al (2021) Effects of different combinations of sugar and starch concentrations on ruminal fermentation and bacterial-community composition in vitro. Front Nutr 8:727714

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002) Acetate utilization and butyryl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquivel-Elizondo S, Ilhan Z, Garcia-Peña E, Krajmalnik-Brown R (2017) Insights into butyrate production in a controlled fermentation system via gene predictions. MSystems 2:10

    Article  Google Scholar 

  • Flemer B et al (2017) Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes 8:428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fultz R et al (2021) Unraveling the metabolic requirements of the gut commensal bacteroides ovatus. Front Microbiol 12:745469

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabris C, Bengelsdorf FR, Dürre P (2015) Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors. Microb Biotechnol 8:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvey M (2023) The Association between Dysbiosis and neurological conditions often manifesting with Chronic Pain. Biomedicines 11:748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez N, Garrido D (2019) Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes. MSystems 4:10

    Article  Google Scholar 

  • He X-Q et al (2022) Prevention of ulcerative Colitis in mice by sweet tea (Lithocarpus Litseifolius) via the regulation of gut microbiota and butyric-acid-mediated anti-inflammatory signaling. Nutrients 14:2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath TD et al (2022) Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. Iscience 25:104158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Xu K, Wang K, Zhang F, Bai X (2022) Dissecting the effect of berberine on the intestinal microbiome in the weaned piglets by metagenomic sequencing. Front Microbiol 13:862882

    Article  PubMed  PubMed Central  Google Scholar 

  • Hur HJ et al (2022) Beneficial effects of a low-glycemic diet on serum metabolites and gut microbiota in obese women with Prevotella and Bacteriodes enterotypes: a randomized clinical trial. Front Nutr 9:861880

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahraman-Ilıkkan Ö (2023) Bacterial Profile and fatty acid composition of Anatolian Bee Bread samples by Metataxonomic and Metabolomic Approach. Curr Microbiol 80:90

    Article  PubMed  Google Scholar 

  • Kasahara K et al (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J et al (2020) Anti-inflammatory properties and gut microbiota modulation of Porphyra tenera extracts in dextran sodium sulfate-induced Colitis in mice. Antioxidants 9:988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C et al (2019) CD1d modulates colonic inflammation in NOD2–/– mice by altering the intestinal microbial composition comprising Acetatifactor muris. J Crohn’s Colitis 13:1081–1091

    Article  Google Scholar 

  • Leth ML, Pichler MJ, Abou Hachem M (2023) Butyrate-producing colonic clostridia: picky glycan utilization specialists. Essays Biochem 67:415–428

    Article  PubMed  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  CAS  PubMed  Google Scholar 

  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl‐CoA: acetate CoA‐transferase gene. Environ Microbiol 12:304–314

    Article  CAS  PubMed  Google Scholar 

  • Lück R, Deppenmeier U (2022) Genetic tools for the redirection of the central carbon flow towards the production of lactate in the human gut bacterium Phocaeicola (Bacteroides) Vulgatus. Appl Microbiol Biotechnol 106:1211–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier TV et al (2017) Impact of dietary resistant starch on the human gut microbiome, metaproteome, and metabolome. MBio 8:10

    Article  Google Scholar 

  • Mallott EK, Amato KR (2022) Butyrate production pathway abundances are similar in human and nonhuman primate gut microbiomes. Mol Biol Evol 39:msab279

    Article  CAS  PubMed  Google Scholar 

  • Meng C, Feng S, Hao Z, Dong C, Liu H (2022a) Changes in gut microbiota composition with age and correlations with gut inflammation in rats. PLoS ONE 17:e0265430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y et al (2022b) Saccharomyces cerevisiae I4 showed alleviating effects on Dextran Sulfate Sodium-Induced Colitis of Balb/c mice. Foods 11:1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Tamayo R et al (2011) Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Yano H (2020) Effect of dietary cellulose nanofiber and exercise on obesity and gut microbiota in mice fed a high-fat-diet. Biosci Biotechnol Biochem 84:613–620

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TTT et al (2018) Cultivable butyrate-producing bacteria of elderly Japanese diagnosed with Alzheimer’s Disease. J Microbiol 56:760–771

    Article  CAS  PubMed  Google Scholar 

  • Oh HJ et al (2019) Enhanced butyric acid production using mixed biomass of brown algae and rice straw by Clostridium tyrobutyricum ATCC25755. Bioresour Technol 273:446–453

    Article  CAS  PubMed  Google Scholar 

  • Pan H et al (2018) A gene catalogue of the Sprague-Dawley rat gut metagenome. Gigascience 7:giy055

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker BJ, Wearsch PA, Veloo AC, Rodriguez-Palacios A (2020) The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 11:906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil P, Bhandary SK, Haridas V, Sarathkumar E, Shetty P (2021) Is butyrate a natural alternative to dexamethasone in the management of CoVID-19?  F1000Research 10:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng K et al (2023) Butyrate and obesity: current research status and future prospect. Front Endocrinol 14:1098881

    Article  Google Scholar 

  • Pfeiffer N, Desmarchelier C, Blaut M, Daniel H, Haller D, Clavel T (2012) Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Arch Microbiol 194:901–907

    Article  CAS  PubMed  Google Scholar 

  • Poeker SA et al (2018) Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep 8:4318

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu J-J et al (2017) Gut microbial diversity analysis using Illumina sequencing for functional dyspepsia with liver depression-spleen deficiency syndrome and the interventional Xiaoyaosan in a rat model. World J Gastroenterol 23:810

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Q, Zhang J, Qu M, Li Y, Zhao X, Ouyang K (2023) Effect of Energy Provision Strategy on Rumen Fermentation characteristics, bacterial diversity and community composition. Bioengineering 10:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raba G, Adamberg S, Adamberg K (2021) Acidic pH enhances butyrate production from pectin by faecal microbiota. FEMS Microbiol Lett 368:fnab042

    Article  CAS  PubMed  Google Scholar 

  • Raz I, Gollop N, Polak-Charcon S, Schwartz B (2007) Isolation and characterisation of new putative probiotic bacteria from human colonic flora. Br J Nutr 97:725–734

    Article  CAS  PubMed  Google Scholar 

  • Ren Z et al (2019) Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats. PLoS ONE 14:e0221815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7:979

    Article  PubMed  PubMed Central  Google Scholar 

  • Salanitro J, Muirhead P, Goodman J (1976) Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. Appl Environ Microbiol 32:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Sasaki D, Hannya A, Tsubota J, Kondo A (2020) In vitro human colonic microbiota utilises D-β-hydroxybutyrate to increase butyrogenesis. Sci Rep 10:8516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seong H et al (2023) Gut microbiota as a potential key to modulating humoral immunogenicity of new platform COVID-19 vaccines. Signal Transduct Target Therapy 8:178

    Article  Google Scholar 

  • Seppo AE et al (2021) Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order Mennonites with traditional farming lifestyle. Allergy 76:3489–3503

    Article  CAS  PubMed  Google Scholar 

  • Simpson HL, Campbell BJ (2015) Dietary fibre–microbiota interactions. Aliment Pharmacol Ther 42:158–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh V et al (2023) Butyrate producers,the Sentinel of Gut: their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 13:1103836

    Article  PubMed  PubMed Central  Google Scholar 

  • Singhal R et al (2021) Decrease in acetyl-CoA pathway utilizing butyrate-producing bacteria is a key pathogenic feature of alcohol-induced functional gut microbial dysbiosis and development of Liver Disease in mice. Gut Microbes 13:1946367

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM (2019) Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol 19:1–16

    Article  Google Scholar 

  • Smith BJ, Miller RA, Schmidt TM (2021) Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice. Msphere 6:e00851–e00821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H et al (2021) Increased production of short-chain fatty acids in Microbacteria Fermentation treated by Fullerenols. J Nanosci Nanotechnol 21:5352–5362

    Article  CAS  PubMed  Google Scholar 

  • Szentirmai É, Millican NS, Massie AR, Kapás L (2019) Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep 9:7035

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamanai-Shacoori Z et al (2017) Roseburia spp.: a marker of health? Future Microbiol 12:157–170

    Article  CAS  PubMed  Google Scholar 

  • Tangestani H, Boroujeni HK, Djafarian K, Emamat H, Shab-Bidar S (2021) Vitamin D and the gut microbiota: a narrative literature review. Clin Nutr Res 10:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y et al (2016) Production of butyrate from lactate by a newly isolated Clostridium sp. BPY5. Appl Biochem Biotechnol 179:361–374

    Article  CAS  PubMed  Google Scholar 

  • Then CK, Paillas S, Wang X, Hampson A, Kiltie AE (2020) Association of Bacteroides acidifaciens relative abundance with high-fibre diet-associated radiosensitisation. BMC Biol 18:1–16

    Article  Google Scholar 

  • Tindall B (2019) The names Hungateiclostridium Zhang et al 2018, Hungateiclostridium Thermocellum (Viljoen et al. 1926) Zhang et al 2018, Hungateiclostridium Cellulolyticum (Patel et al. 1980) Zhang et al 2018, Hungateiclostridium aldrichii (Yang et al. 1990) Zhang et al 2018, Hungateiclostridium alkalicellulosi (Zhilina et al. 2006) Zhang et al 2018, Hungateiclostridium clariflavum (Shiratori et al. 2009) Zhang et al 2018, Hungateiclostridium straminisolvens (Kato et al. 2004) Zhang et al 2018 and hungateiclostridium saccincola (Koeck et al. 2016) Zhang et al. 2018 contravene rule 51b of the International Code of nomenclature of prokaryotes and require replacement names in the genus Acetivibrio Patel et al. 1980. Int J Syst Evol MicroBiol 69:3927–3932

    Article  CAS  PubMed  Google Scholar 

  • Topchiy TВ, Ardatskaya MD, Butorova LI, Маslovskii LV, Мinushkin ОN (2022) Features of the intestine conditions at patients with a new coronavirus Infection. Ter Arkh 94:920–926

    PubMed  Google Scholar 

  • Van den Abbeele P et al (2022) The effect of amino acids on production of SCFA and bCFA by members of the porcine colonic microbiota. Microorganisms 10:762

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Abbeele P et al (2023) Lacticaseibacillus rhamnosus ATCC 53103 and Limosilactobacillus Reuteri ATCC 53608 synergistically boost butyrate levels upon Tributyrin Administration Ex vivo. Int J Mol Sci 24:5859

    Article  PubMed  PubMed Central  Google Scholar 

  • Vital M et al (2013) A gene-targeted approach to investigate the intestinal butyrate-producing bacterialcommunity. Microbiome 1:1–14

    Article  Google Scholar 

  • Vital M, Gao J, Rizzo M, Harrison T, Tiedje JM (2015) Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia. ISME J 9:832–843

    Article  CAS  PubMed  Google Scholar 

  • Wang R et al (2021) Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches. Water Res 193:116896

    Article  CAS  PubMed  Google Scholar 

  • Widodo W, Ariani AL, Widianto D, Haltrich D (2021) Genomic comparison of Lactobacillus casei AP and Lactobacillus plantarum DR131 with emphasis on the butyric acid biosynthetic pathways. Microorganisms 9:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijdeveld M et al (2023) Identifying gut microbiota associated with gastrointestinal symptoms upon Roux-en-Y gastric bypass. Obes Surg 33:1635–1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M et al (2023) B utyriproducens baijiuensis BJN0003: a potential new member of the family Oscillospiraceae isolated from Chinese Baijiu. 3 Biotech 13:205

    Article  PubMed  Google Scholar 

  • Xu E et al (2021) Identification of enterotype and its effects on intestinal butyrate production in pigs. Animals 11:730

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L et al (2023a) In vitro simulated fecal fermentation of mixed grains on short-chain fatty acid generation and its metabolized mechanism. Food Res Int 170:112949

    Article  CAS  PubMed  Google Scholar 

  • Xu M et al (2023b) Bacteroides vulgatus ameliorates lipid metabolic disorders and modulates gut microbial composition in hyperlipidemic rats. Microbiol Spectr 11:e02517–02522

    PubMed  PubMed Central  Google Scholar 

  • Yan F et al (2023) Gut microbiota dysbiosis with Hepatitis B virus Liver Disease and association with immune response. Front Cell Infect Microbiol 13:461

    Article  Google Scholar 

  • Yang C et al (2023) Rumen microbiota-host transcriptome interaction mediates the protective effects of trans-10, cis-12 CLA on facilitating weaning transition of lambs. Anim Nutr 12:345–359

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2022a) Alterations of the gut microbiota in patients with diabetic Nephropathy. Microbiol Spectr 10:e00324–e00322

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang S, Wu S, Madsen MH, Shi S (2022b) Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids, especially butyric acid. J Anim Sci Biotechnol 13:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S et al (2020) Characterization of metagenome-assembled genomes and carbohydrate-degrading genes in the gut microbiota of tibetan pig. Front Microbiol 11:595066

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu L-B, Zhang Y-C, Huang H-H, Lin J (2021) Prospects for clinical applications of butyrate-producing bacteria. World J Clin Pediatr 10:84

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (82160788), Jiangxi University of Traditional Chinese Medicine, First Level of Integrative Medicine.

Funding

This study was supported by the National Natural Science Foundation of China (82160788) and the Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine (zxyylxk20220103).

Author information

Authors and Affiliations

Authors

Contributions

XM: Methodology, Experimental design, Investigation, Writing—original draft, Visualization, Software. QS: Project administration, Writing— review & editing, Supervision, Funding acquisition. The manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Qinglong Shu.

Ethics declarations

Competing interests

The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Shu, Q. Novel primers to identify a wider diversity of butyrate-producing bacteria. World J Microbiol Biotechnol 40, 76 (2024). https://doi.org/10.1007/s11274-023-03872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03872-1

Keywords

Navigation