Skip to main content
Log in

Biotechnology and bioengineering of pullulanase: state of the art and perspectives

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akassou M, Groleau D (2019) Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 39:337–350

    Article  CAS  PubMed  Google Scholar 

  • Alagoz D, Yildirim D, Guvenmez HK et al (2016) Covalent immobilization and characterization of a novel pullulanase from Fontibacillus sp Strain DSHK 107 onto FlorisilA (R) and nano-silica for pullulan hydrolysis. Appl Biochem Biotechnol 179:1262–1274

    Article  CAS  PubMed  Google Scholar 

  • Ali G, Dulong V, Gasmi SN et al (2015) Covalent immobilization of pullulanase on alginate and study of its hydrolysis of pullulan. Biotechnol Prog 31:883–889

    Article  CAS  PubMed  Google Scholar 

  • Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z et al (2017) Advances in molecular engineering of carbohydrate-binding modules. Proteins Struct Funct Bioinform 85:1602–1617

    Article  CAS  Google Scholar 

  • Arnold FH (2018) Directed evolution: Bringing new chemistry to life. Angew Chemie Int Ed 57:4143–4148

    Article  CAS  Google Scholar 

  • Bakshi A, Patnaik PR, Gupta JK (1992) Thermostable pullulanase from a mesophilic Bacillus cereus isolate and its mutant UV7.4. Biotechnol Lett 14:689–694

    Article  CAS  Google Scholar 

  • Bertoft E (2017) Understanding starch structure: recent progress. Agronomy 7:56

    Article  Google Scholar 

  • Bøjstrup M, Christensen CE, Windahl MS et al (2014) A chromogenic assay for limit dextrinase and pullulanase activity. Anal Biochem 449:45–51

    Article  PubMed  Google Scholar 

  • Chang M, Chu X, Lv J et al (2016) Improving the thermostability of acidic pullulanase from Bacillus naganoensis by rational design. PLoS ONE 11:e0165006

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W-B, Nie Y, Xu Y, Xiao R (2014) Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control. Bioprocess Biosyst Eng 37:601–608

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Li Y, Nie J et al (2015) Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme Microb Technol 78:74–83

    Article  CAS  PubMed  Google Scholar 

  • Chen A, Sun Y, Zhang W et al (2016) Downsizing a pullulanase to a small molecule with improved soluble expression and secretion efficiency in Escherichia coli. Microb Cell Fact 15:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen AN, Xu TT, Ge Y, Wang LY, Tang WJ, Li S (2019) Hydrogen-bond-based protein engineering for the acidic adaptation of Bacillus acidopullulyticus pullulanase. Enzyme Microb Technol 124:79–83

    Article  CAS  PubMed  Google Scholar 

  • Choi K-H, Cha J (2015) Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639. Extremophiles 19:909–920

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Wu J (2015) Enhancing the secretion efficiency and thermostability of a Bacillus deramificans pullulanase mutant (D437H/D503Y) by N-terminal domain truncation. Appl Environ Microbiol 81:1926–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Chen J, Wu J (2013) Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis. Appl Environ Microbiol 79:4072–4077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Zou C, Wu J (2015) Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli. Bioresour Technol 194:137–143

    Article  CAS  PubMed  Google Scholar 

  • Duffner F, Bertoldo C, Andersen JT et al (2000) A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. J Bacteriol 182:6331–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ercan D, Demirci A (2015) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 35:1–14

    Article  CAS  PubMed  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Bin AA (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:921362

    Article  PubMed  PubMed Central  Google Scholar 

  • Janeček Š, Majzlová K, Svensson B, MacGregor EA (2017) The starch-binding domain family CBM41—an in silico analysis of evolutionary relationships. Proteins Struct Funct Bioinform 85:1480–1492

    Article  Google Scholar 

  • Jiao Y, Wu Y, Chen H et al (2019) The impact of N-terminal nonessential domains on the enzymological properties of the pullulanase from a marine Bacillus megaterium. Biotechnol Lett 41:849–857

    Article  CAS  PubMed  Google Scholar 

  • Kahar UM, Chan K-G, Salleh MM et al (2013) A high molecular-mass Anoxybacillus sp. SK3-4 amylopullulanase: characterization and its relationship in carbohydrate utilization. Int J Mol Sci 14:11302–11318

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahar UM, Ng CL, Chan K-G, Goh KM (2016) Characterization of a type I pullulanase from Anoxybacillus sp. SK3-4 reveals an unusual substrate hydrolysis. Appl Microbiol Biotechnol 100:6291–6307

    Article  CAS  PubMed  Google Scholar 

  • Kahar UM, Chan K-G, Sani MH et al (2017) Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4. Int J Biol Macromol 104:322–332

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Park K-M, Choi K-H et al (2011) Molecular cloning and biochemical characterization of a heat-stable type I pullulanase from Thermotoga neapolitana. Enzyme Microb Technol 48:260–266

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Ray RC, Mohapatra UB (2012) Purification, characterization and application of thermostable amylopullulanase from Streptomyces erumpens MTCC 7317 under submerged fermentation. Ann Microbiol 62:931–937

    Article  CAS  Google Scholar 

  • Kim J-H, Sunako M, Ono H et al (2009) Characterization of the C-terminal truncated form of amylopullulanase from Lactobacillus plantarum L137. J Biosci Bioeng 107:124–129

    Article  CAS  PubMed  Google Scholar 

  • Kusano S, Shiraishi T, Takahashi S-I et al (1989) Immobilization of Bacillus acidopullulyticus pullulanase and properties of the immobilized pullulanases. J Ferment Bioeng 68:233–237

    Article  CAS  Google Scholar 

  • Li Z, Chen S, Gu Z et al (2014) Alpha-cyclodextrin: enzymatic production and food applications. Trends Food Sci Technol 35:151–160

    Article  Google Scholar 

  • Li L, Dong F, Lin L et al (2018a) N-Terminal domain truncation and domain insertion-based engineering of a novel thermostable type I pullulanase from Geobacillus thermocatenulatus. J Agric Food Chem 66:10788–10798

    Article  CAS  PubMed  Google Scholar 

  • Li L, Dong F, Lin L et al (2018b) Biochemical characterization of a novel thermostable type I pullulanase produced recombinantly in Bacillus subtilis. Starch - Stärke 70:1700179

    Article  Google Scholar 

  • Li G, Dong Y, Reetz MT (2019) Can machine learning revolutionize directed evolution of selective enzymes? Adv Synth Catal 361:2377–2386

    CAS  Google Scholar 

  • Li XX, Bai YX, Ji HY et al (2020) Phenylalanine476 mutation of pullulanase from Bacillus subtilis str. 168 improves the starch substrate utilization by weakening the product beta-cyclodextrin inhibition. Int J Biol Macromol 155:490–497

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Wu X-L, Xiong J et al (2020) Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coord Chem Rev 406:213149

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490-495

    Article  CAS  Google Scholar 

  • Long J, Wu Z, Li X et al (2015) New method for the immobilization of pullulanase onto hybrid magnetic (Fe3O4-kappa-carrageenan) nanoparticles by electrostatic coupling with pullulanase/chitosan complex. J Agric Food Chem 63:3534–3542

    Article  CAS  PubMed  Google Scholar 

  • Long J, Xu E, Li X et al (2016) Effect of chitosan molecular weight on the formation of chitosan-pullulanase soluble complexes and their application in the immobilization of pullulanase onto Fe3O4-kappa-carrageenan nanoparticles. Food Chem 202:49–58

    Article  CAS  PubMed  Google Scholar 

  • Long J, Zhang B, Li X et al (2018) Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles. Food Chem 239:276–286

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Hu X, Shen P et al (2018) A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency. Int J Biol Macromol 109:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2018) Biochemical characterization of halophilic, alkalithermophilic amylopullulanase PulD7 and truncated amylopullulanases PulD7ΔN and PulD7ΔC. Int J Biol Macromol 111:632–638

    Article  CAS  PubMed  Google Scholar 

  • Møller MS, Henriksen A, Svensson B (2016) Structure and function of α-glucan debranching enzymes. Cell Mol Life Sci 73:2619–2641

    Article  PubMed  Google Scholar 

  • Nair SU, Singhal RS, Kamat MY (2006) Enhanced production of thermostable pullulanase type I using Bacillus cereus FDTA 13 and its mutant. Food Technol Biotechnol 44:275–282

    CAS  Google Scholar 

  • Nisha M, Satyanarayana T (2013) Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol 97:6279–6292

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2014) Characterization and multiple applications of a highly thermostable and Ca2+-independent amylopullulanase of the extreme thermophile geobacillus thermoleovorans. Appl Biochem Biotechnol 174:2594–2615

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2015) The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Microbiol Biotechnol 99:5461–5474

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2016) Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl Microbiol Biotechnol 100:5661–5679

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2017) Characteristics and applications of recombinant thermostable amylopullulanase of Geobacillus thermoleovorans secreted by Pichia pastoris. Appl Microbiol Biotechnol 101:2357–2369

    Article  CAS  PubMed  Google Scholar 

  • Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. J Sci Food Agric 95:1968–1978

    Article  CAS  PubMed  Google Scholar 

  • Rüdiger A, Jorgensen PL, Antranikian G (1995) Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol 61:567–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Schirmer M, Jekle M, Becker T (2015) Starch gelatinization and its complexity for analysis. Starch - Stärke 67:30–41

    Article  CAS  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    Article  CAS  PubMed  Google Scholar 

  • Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New Phytol 214:943–951

    Article  CAS  PubMed  Google Scholar 

  • Turkenburg JP, Brzozowski AM, Svendsen A et al (2009) Structure of a pullulanase from Bacillus acidopullulyticus. Proteins Struct Funct Bioinform 76:516–519

    Article  CAS  Google Scholar 

  • Wang Y, Liu Y, Wang Z, Lu F (2014) Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis. Biotechnol Lett 36:1783–1789

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nie Y, Mu X et al (2016) Disorder prediction-based construct optimization improves activity and catalytic efficiency of Bacillus naganoensis pullulanase. Sci Rep 6:24574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu Z, Zhou Z (2017a) Improving pullulanase catalysis via reversible immobilization on modified Fe3O4@Polydopamine nanoparticles. Appl Biochem Biotechnol 182:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu Z, Zhou Z (2017b) Regulation of the catalytic behavior of pullulanases chelated onto nickel(II)-modified magnetic nanoparticles. Enzyme Microb Technol 101:9–16

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nie Y, Xu Y (2018) Improvement of the activity and stability of starch-debranching pullulanase from Bacillus naganoensis via tailoring of the active sites lining the catalytic pocket. J Agric Food Chem 66:13236–13242

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nie Y, Xu Y (2019a) Industrially produced pullulanases with thermostability: discovery, engineering, and heterologous expression. Bioresour Technol 278:360–371

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen S, Zhao X et al (2019b) Enhancement of the production of Bacillus naganoensis pullulanase in recombinant Bacillus subtilis by integrative expression. Protein Expr Purif 159:42–48

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Ma J, Guo S, Wei D (2014) A type I pullulanase of Bacillus cereus Nws-bc5 screening from stinky tofu brine: functional expression in Escherichia coli and Bacillus subtilis and enzyme characterization. Process Biochem 49:1893–1902

    Article  CAS  Google Scholar 

  • Wu H, Yu X, Chen L, Wu G (2014) Cloning, overexpression and characterization of a thermostable pullulanase from Thermus thermophilus HB27. Protein Expr Purif 95:22–27

    Article  CAS  PubMed  Google Scholar 

  • Yang KK, Wu Z, Arnold FH (2019) Machine-learning-guided directed evolution for protein engineering. Nat Methods 16:687–694

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Xu J, Liu X et al (2015) Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Sci Rep 5:18405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Su L, Duan X et al (2017) High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb Cell Fact 16:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S-Y, Guo Z-W, Wu X-L et al (2020a) Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 313:39–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Nie Y, Zhou X et al (2020b) Enhancement of pullulanase production from recombinant Bacillus subtilis by optimization of feeding strategy and fermentation conditions. AMB Expr 10:11

    Article  Google Scholar 

  • Zhou M, Ju X, Zhou Z et al (2019) Development of an immobilized cellulase system based on metal–organic frameworks for improving ionic liquid tolerance and in situ saccharification of bagasse. ACS Sustain Chem Eng 7:19185–19193

    Article  CAS  Google Scholar 

  • Zou C, Duan X, Wu J (2014) Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Bioresour Technol 172:174–179

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Duan X, Wu J (2016a) Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis. J Ind Microbiol Biotechnol 43:495–504

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Duan X, Wu J (2016b) Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis. Appl Microbiol Biotechnol 100:7115–7123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 21878105), the National Key Research and Development Program of China (Grant Nos. 2018YFC1603400, 2018YFC1602100), the Science and Technology Program of Guangzhou (Grant No. 201904010360), the Fundamental Research Funds for the Central Universities (Grant No. 2019PY15), and the China Postdoctoral Science Foundation (Grant No. 2019M662922) for partially funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yong Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Zhang, SY., Luo, ZG. et al. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 37, 43 (2021). https://doi.org/10.1007/s11274-021-03010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03010-9

Keywords

Navigation