Skip to main content

Advertisement

Log in

The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value added platform for renewable biodiesel

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oleaginous microorganisms are regarded as efficient, renewable cell factories for lipid biosynthesis, a biodiesel precursor, to overwhelm the cosmopolitan energy crisis with affordable investment capital costs. Present research highlights production and characterization of lipids by a newly isolated oleaginous bacterium, Sphingomonas sp. EGY1 DSM 29616 through an eco-friendly approach. Only sweet whey [42.1% (v/v)] in tap water was efficiently used as a growth medium and lipid production medium to encourage cell growth and trigger lipid accumulation simultaneously. Cultivation of Sphingomonas sp. EGY1 DSM 29616 in shake flasks resulted in the accumulation of 8.5 g L−1 lipids inside the cells after 36 h at 30 °C. Triglycerides of C16:C18 saturated and unsaturated fatty acids showed a similar pattern to tripalmitin or triolein; deduced from gas chromatography (GC), thin layer chromatography (TLC), and Matrix-assisted laser desorption/ionization time-of-flight-mass spectra analysis (MALDI-TOF-MS) analyses. Batch cultivation 2.5 L in a laboratory scale fermenter led to 13.8 g L−1 accumulated lipids after 34 h at 30 °C. Present data would underpin the potential of Sphingomonas sp. EGY1 DSM 29616 as a novel renewable cell factory for biosynthesis of biodiesel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Elreesh G, Abd-El-Haleem D (2014) Promising oleaginous filamentous fungi as biodiesel feed stocks: screening and identification. Eur J Exp Biol 4(1):576–582

    Google Scholar 

  • Adhyaru DN, Bhatt NS, Modi HA (2015) Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Biores Biopro 2(1):1–14

    Article  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165(6):377–386

    Article  CAS  Google Scholar 

  • Amaretti A, Raimondia S, Leonardia A, Rossia M (2012) Candida freyschussii: an Oleaginous Yeast. Chem Eng 27:139–144

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  • Breil C, Meullemiestre A, Vian M, Chemat F (2016) Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules 21(2):196

    Article  Google Scholar 

  • Campbell C (2006) The Rimini Protocol an oil depletion protocol: Heading off economic chaos and political conflict during the second half of the age of oil. Energy Policy 34(12):1319–1325

    Article  Google Scholar 

  • Carota E, Crognale S, D’Annibale A, Gallo AM, Stazi SR, Petruccioli M (2017) A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Sci Total Environ 15(584–585):554–560. doi:10.1016/j.scitotenv.2017.01.068

    Article  Google Scholar 

  • Eden PA, Schmidt TM, BLAKEMORE RP, Pace NR (1991) Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Inter J Syst Bacteriol 41(2):324–325

    Article  CAS  Google Scholar 

  • Enshaeieh M, Abdoli A, Nahvi I, Madani M (2013) Selection and optimization of single cell oil production from Rodotorula 110 using environmental waste as substrate. J Cell Mol Res 4(2):68–75

    Google Scholar 

  • García-Torreiro M, Lú-Chau TA, Steinbüchel A, Lema JM (2016) Waste to bioplastic conversion by the moderate halophilic bacterium Halomonas boliviensis. Chem Eng Trans 49:163–168. doi:10.3303/CET1649028

    Google Scholar 

  • Gidden J, Denson J, Liyanage R, Ivey DM, Lay JO (2009) Lipid compositions in Escherichia coli and Bacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF mass spectrometry. Inter J Mass Spectrom 283(1):178–184

    Article  CAS  Google Scholar 

  • Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24(9):1703–1711

    Article  CAS  Google Scholar 

  • Griffiths MJ, Dicks RG, Richardson C, Harrison ST (2011) Advantages and challenges of microalgae as a source of oil for biodiesel. biodiesel–feedstocks process technol 9:177–200.

    Google Scholar 

  • Hegab HM, ElMekawy A, Stakenborg T (2013) Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 7(2):021502

    Article  Google Scholar 

  • Herrero OM, Alvarez HM (2016) Whey as a renewable source for lipid production by Rhodococcus strains: physiology and genomics of lactose and galactose utilization. Eur J Lipid Sci Technol 118(2):262–272

    Article  CAS  Google Scholar 

  • Kawata Y, Aiba S-i (2010) Poly(3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotechnol Biochem 74(1):175–177

    Article  CAS  Google Scholar 

  • Kawata Y, Shi L-H, Kawasaki K, Shigeri Y (2012) Taxoniomic characterization of and metabolic analysis of Halomonas sp. a highly bioplastic poly (3-hydroxybutyrtae)—producing bacterium. J Biosci Bioeng 113(4):456–460

    Article  CAS  Google Scholar 

  • Kraisintu P, Yongmanitchai W, Limtong S (2010) Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart J Nat Sci 44:436–445

    CAS  Google Scholar 

  • Krell K, Hashim SA (1963) Measurement of serum triglycerides by thin-layer chromatography and infrared spectrophotometry. J Lipid Res 4(4):407–412

    CAS  Google Scholar 

  • Kumar V, Muthuraj M, Palabhanvi B, Das D (2016) Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 IITG under continuous mode of operation. Biores Technol 200:770–779. doi:10.1016/j.biortech.2015.11.004

    Article  CAS  Google Scholar 

  • Lee SJ, Lee SJ, Lee DW (2013) Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 4:92. doi:10.3389/fmicb.2013.00092.eCollection2013

    Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    Article  CAS  Google Scholar 

  • Liu LP, Hu Y, Lou WY, Li N, Wu H, Zong MH (2016) Use of crude glycerol as sole carbon source for microbial lipid production by oleaginous yeasts. Appl Biochem Biotechnol [Epub ahead of print]

  • Matsakas L, Sterioti A-A, Rova U, Christakopoulos P (2014) Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Indust Crops Prod 62:367–372.

    Article  CAS  Google Scholar 

  • Moon NJ, Hammond E, Glatz BA (1978) Conversion of cheese whey and whey permeate to oil and single-cell protein. J Dairy Sci 61(11):1537–1547

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Comb Sci 37(1):52–68

    Article  CAS  Google Scholar 

  • Ozmihci S, Kargi F (2007) Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation. Enzym Microb Technol 41(1):169–174

    Article  CAS  Google Scholar 

  • Palabhanvi B, Muthuraj M, Kumar V, Mukherjee M, Ahlawat S, Das D (2017) Continuous cultivation of lipid rich microalga Chlorella sp. FC2 IITG for improved biodiesel productivity via control variable optimization and substrate driven pH control. Biores Technol 224:481–489. doi:10.1016/j.biortech.2016.11.020

    Article  CAS  Google Scholar 

  • Panesar PS, Kennedy JF, Gandhi DN, Bunko K (2007) Bioutilisation of whey for lactic acid production. Food Chem 105(1):1–14

    Article  CAS  Google Scholar 

  • Schulze I, Hansen S, Großhans S, Rudszuck T, Ochsenreither K, Syldatk C, Neumann A (2014) Characterization of newly isolated oleaginous yeasts—Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express 4:24.

    Article  Google Scholar 

  • Shahina M, Hameed A, Lin S-Y, Hsu Y-H, Liu Y-C, Cheng I-C, Lee M-R, Lai W-A, Lee R-J, Young C-C (2013) Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Inter J Syst Evolut Microbiol 63(Pt 9):3415–3422.

    Article  CAS  Google Scholar 

  • Simon-Colin C, Rague´ne`s G, Cozien J, Guezennec JG (2008) Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol 104(5):1425–1432

    Article  CAS  Google Scholar 

  • Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third-generation biofuel. J Chem Technol Biotechnol 86(11):1349–1353

    Article  CAS  Google Scholar 

  • Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR, O’Bryan PJ, Cotta MA, Balan V, Jin M, Sousa LC, Dale BE (2016) Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Eioeng 113(8):1676–1690

    CAS  Google Scholar 

  • Souza AF, Rodriguez DM, Ribeaux DR, Luna MAC, Lima e Silva TA, Andrade RFS, Gusmão NB, Campos-Takaki GM (2016) Waste soybean oil and corn steep liquor as economic substrates for bioemulsifier and biodiesel production by Candida lipolytica UCP 0998. Int J Mol Sci 17(10):1608. doi:10.3390/ijms17101608

    Article  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171(2):73–80

    Article  CAS  Google Scholar 

  • Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Biores Technol 102(19):9286–9290

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Towijit U, Amponpiboon C, Sriariyanun M, Kongruang S (2014) Optimization of lipid production by oleaginous yeast using response surface methodology. Suranaree J Sci Technol 21(4):321–328

    Google Scholar 

  • Van-Thuoc D, Quillaguaman J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    CAS  Google Scholar 

  • Zhang X, Shen H, Yang X, Qian Wang Q, Yua X, Zhao ZK (2016) Microbial lipid production by oleaginous yeasts on Laminaria residue hydrolysates. RSC Adv 6:26752. doi:10.1039/c6ra00995f

    Article  CAS  Google Scholar 

  • Zhao X, Kong X, Hua Y, Feng B, Zhao ZK (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110(5):405–412

    Article  CAS  Google Scholar 

  • Zhu L, Zong M, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Biores Technol 99(16):7881–7885

    Article  CAS  Google Scholar 

Download references

Author contributions

NA conducted all of the experimental laboratory work. YE revised the whole manuscript, put the designs of some experiments especially scaling up experiment and discussed the whole laboratory data. AME wrote the whole manuscript drafting, carried out molecular identification of the bacterial isolate, analyzed, and discussed the whole laboratory data. AH carried out MALDI-TOF-MS experiment and discussed the whole laboratory data. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira M. Embaby.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, N.N., Elbahloul, Y., Embaby, A.M. et al. The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value added platform for renewable biodiesel. World J Microbiol Biotechnol 33, 145 (2017). https://doi.org/10.1007/s11274-017-2305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2305-7

Keywords

Navigation