Skip to main content

Advertisement

Log in

The feather-degrading bacterial community in two soils as revealed by a specific primer targeting serine-type keratinolytic proteases

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Feather waste represents a huge resource of protein, but is underutilized due to its recalcitrant nature. Feather-degrading bacteria can biologically degrade feathers and have great potential for industries. In this study, we first designed a primer set (BC) suitable for exploring the diversity of the keratinolytic bacterial community with denatured gradient gel electrophoresis (DGGE). With the BC primer set, the difference in the keratinolytic bacterial community between a feather-dumping (FD) soil and a non feather-dumping (NFD) soil and the influence of feather addition (enrichment culture) on the keratinolytic bacterial community were investigated. DGGE and sequencing showed that keratinolytic bacteria in these soils belong to 2 phyla (Actinobacteria and Proteobacteria) and 9 genera (Micromonospora, Verrucosispora, Actinopolymorpha, Knoellia, Hyalangium, Stigmatella, Archangium, Cystobacter, and Luteimonas). Feather addition decreased the species richness of the keratinolytic bacteria in FD soil, but greatly increased the diversity, species richness and abundance in NFD soil. Moreover, feather addition to NFD soil induced some keratinolytic bacteria that were absent in all of the other soils. Collectively, these data indicate that keratinolytic bacteria are diverse in both FD and NFD soil, and some novel keratinolytic bacteria taxa might be revealed by using the BC primer set.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bach E, Daroit DJ, Corrêa APF, Brandelli A (2011) Production and properties of keratinolytic proteases from three novel Gram-negative feather-degrading bacteria isolated from Brazilian soils. Biodegradation 22:1191–1201. doi:10.1007/s10532-011-9474-0

    Article  CAS  Google Scholar 

  • Benkiar A, Jaouadi NZ, Badis A, Rebzani F, Touioui SB, Rekik H, Naili B, Ferradji FZ, Bejar S, Jaouadi B (2013) Biochemical and molecular characterization of a thermo- and detergent-stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. Int Biodeterior Biodegrad 83:129–138. doi:10.1016/j.ibiod.2013.05.014

    Article  CAS  Google Scholar 

  • Blythe RM, Lichti NI, Smyser TJ, Swihart RK (2015) Selection, caching, and consumption of hardwood seeds by forest rodents: implications for restoration of American chestnut. Restor Ecol 23:473–481. doi:10.1111/rec.12204

    Article  Google Scholar 

  • Böckle B, Galunsky B, Müller R (1995) Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61:3705–3710

    Google Scholar 

  • Boyce R, Chilana P, Rose TM (2009) iCODEHOP: a new interactive program for designing COnsensus-DEgenerate hybrid oligonucleotide primers from multiply aligned protein sequences. Nucleic Acid Res 37:W222–W228. doi:10.1093/nar/gkp379

    Article  CAS  Google Scholar 

  • Bozinovski D, Taubert M, Kleinsteuber S, Richnow H, von Bergen M, Vogt C, Seifert J (2014) Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Syst Appl Microbiol 37:488–501. doi:10.1016/j.syapm.2014.07.005

    Article  CAS  Google Scholar 

  • Bressollier P, Letourneau F, Urdaci M, Verneuil B (1999) Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl Environ Microbiol 65:2570–2576

    CAS  Google Scholar 

  • Cavello IA, Hours RA, Rojas NL, Cavalitto SF (2013) Purification and characterization of a keratinolytic serine protease from Purpureocillium lilacinum LPS # 876. Process Biochem 48:972–978. doi:10.1016/j.procbio.2013.03.012

    Article  CAS  Google Scholar 

  • Che J, Zhao XQ, Zhou X, Jun JZ, Shen RF (2015) High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Appl Soil Ecol 85:21–29. doi:10.1016/j.apsoil.2014.09.003

    Article  Google Scholar 

  • Cui H, Zhou Y, Gu Z, Zhu H, Fu S, Yao Q (2015) The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biol Biochem 82:119–126. doi:10.1016/j.soilbio.2015.01.003

    Article  CAS  Google Scholar 

  • Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A (2012) Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11:52. doi:10.1186/1475-2859-11-52

    Article  Google Scholar 

  • El-Bondkly AM, El-Gendy MMA (2010) Keratinolytic activity from new recombinant fusant AYA2000, derived from endophytic Micromonospora strains. Can J Microbiol 56:748–760. doi:10.1139/W10-058

    Article  CAS  Google Scholar 

  • Gawade AE, Bale SR (2013) Characterization of a thermostable serine keratinase from newly isolated themophilic Bacillus licheniformis. Int J Adv Res Eng Appl Sci 2:14–25

    Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33. doi:10.1007/s00253-005-0239-8

    Article  CAS  Google Scholar 

  • Gupta R, Tiwary E, Sharma R, Rajput R, Nair N (2013) Microbial keratinases: diversity and applications. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology—biotechnology of thermophiles, 2nd edn. Springer, London, pp 881–904

    Chapter  Google Scholar 

  • Hassan MA, Haroun BM, Amara AA, Serour EA (2013) Production and characterization of keratinolytic protease from new wool-degrading Bacillus species isolated from Egyptian ecosystem. Biomed Res Int. doi:10.1155/2013/175012

    Google Scholar 

  • Hu H, Zhao D, Zhang Q (2015) Primers and probe design for identification and analysis of oil degradation bacteria (Bacillus licheniformis) with quantitative PCR technology. Biotechnology 14:194–199. doi:10.3923/biotech.2015.194.199

    Article  Google Scholar 

  • Huang Y, Busk PK, Herbst FA, Lange L (2015) Genome and secretome analyses provide insights into keratin decomposition by novel proteases fromthe non-pathogenic fungus Onygena corvina. Appl Microbiol Biotechnol 99:9635–9649. doi:10.1007/s00253-015-6805-9

    Article  CAS  Google Scholar 

  • Jaouadi NZ, Rekik H, Badis A, Trabelsi S, Belhoul M, Yahiaoui AB, Aicha HB, Toumi A, Bejar S, Jaouadi B (2013) Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One 8:e76722. doi:10.1371/journal.pone.0076722

    Article  CAS  Google Scholar 

  • Jaouadi NZ, Rekik H, Elhoul MB, Rahem FZ, Hila CG, Aicha HSB, Badis A, Toumi A, Bejar S, Jaouadi B (2015) A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol Macromol 79:952–964. doi:10.1016/j.ijbiomac.2015.05.038

    Article  Google Scholar 

  • Kim JD (2007) Purification and characterization of a keratinase from a feather-degrading fungus, Aspergillus flavus strain K-03. Mycobiology 35:219–225. doi:10.4489/MYCO.2007.35.4.219

    Article  CAS  Google Scholar 

  • Kim JM, Lim WJ, Suh HJ (2001) Feather-degrading Bacillus species from poultry waste. Process Biochem 37:287–291. doi:10.1016/S0032-9592(01)00206-0

    Article  CAS  Google Scholar 

  • Laba W, Choinska A, Rodziewicz A, Piegza M (2015) Keratinolytic abilities of Micrococcus luteus from poultry waste. Braz J Microbiol 46:691–700. doi:10.1590/S1517-838246320140098

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096. doi:10.1007/s00253-015-7262-1

    Article  CAS  Google Scholar 

  • Latshaw JD, Musharaf N, Retrum R (1994) Processing of feather meal to maximize its nutritional value for poultry. Anim Feed Sci Technol 47:179–188

    Article  Google Scholar 

  • Li B, Yao Q, Zhu H (2014) Approach to analyze the diversity of Myxobacteria in soil by semi-nested PCR-denaturing gradient gel electrophoresis (DGGE) based on taxon-specific gene. PLoS One 9:e108877. doi:10.1371/journal.pone.0108877

    Article  Google Scholar 

  • Lin X, Kelemen DW, Miller ES, Shih JCH (1995) Nucleotide sequence and expression of kerA, the gene encoding keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61:1469–1474

    CAS  Google Scholar 

  • Lin X, Inglis GD, Yanke LJ, Cheng KJ (1999) Selection and characterization of feather-degrading bacteria from canola meal compost. J Ind Microbiol Biot 23:149–153

    Article  CAS  Google Scholar 

  • Liu B, Zhang J, Fang Z, Du G, Chen J, Liao X (2014a) Functional analysis of the C-terminal propeptide of keratinase from Bacillus licheniformis BBE11-1 and its effect on the production of keratinase in Bacillus subtilis. Process Biochem 49:1538–1542. doi:10.1016/j.procbio.2014.04.021

    Article  CAS  Google Scholar 

  • Liu Q, Zhang T, Song N, Li Q, Wang Z, Zhang X, Lu X, Fang J, Chen J (2014b) Purification and characterization of four key enzymes from a feather-degrading Bacillus subtilis from the gut of tarantula Chilobrachys guangxiensis. Int Biodeterior Biodegrad 96:26–32. doi:10.1016/j.ibiod.2014.08.008

    Article  Google Scholar 

  • Mariotte P (2014) Do subordinate species punch above their weight? Evidence from above- and below-ground. New Phytol 203:16–21. doi:10.1111/nph.12789

    Article  Google Scholar 

  • Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O (2015) Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut R 22:4725–4735. doi:10.1007/s11356-014-3721-y

    Article  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322. doi:10.1016/S1369-5274(99)80055-1

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Hansen MA, Giagnoni L, Ascher J, Arenella M, Sørensen SJ, Pietramellara G, Nannipieri P, Renella G (2015) Maize lines with different nitrogen use efficiency select bacterial communities with different β-glucosidase-encoding genes and glucosidase activity in the rhizosphere. Biol Fert Soils 51:995–1004. doi:10.1007/s00374-015-1045-9

    Article  CAS  Google Scholar 

  • Prakash P, Jayalakshmi SK, Sreeramulu K (2010) Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl Microbiol Biotechnol 87:625–633. doi:10.1007/s00253-010-2499-1

    Article  CAS  Google Scholar 

  • Rawlings ND (2013) Protease families, evolution and mechanism of action. In: Brix K, Stöcker W (eds) Proteases: structure and function. Springer, Wien, pp 1–36

    Chapter  Google Scholar 

  • Selvam K, Vishnupriya B, Yamuna M (2013) Isolation and description of keratinase producing marine actinobacteria from South Indian Coastal Region. Afr J Biotechnol 12:19–26. doi:10.5897/AJB12.2428

    Article  Google Scholar 

  • Stach JEM, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4:169–182. doi:10.1046/j.1462-2920.2002.00283.x

    Article  Google Scholar 

  • Tatineni R, Doddapaneni KK, Potumarthi RC, Vellanki RN, Kandathil MT, Kolli N, Mangamoor LN (2008) Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresour Technol 99:1596–1602. doi:10.1016/j.biortech.2007.04.019

    Article  CAS  Google Scholar 

  • Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012) Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J Environ Manage 99:10–17. doi:10.1016/j.jenvman.2011.12.030

    Article  CAS  Google Scholar 

  • Thys RCS, Brandelli A (2006) Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. J Appl Microbiol 101:1259–1268. doi:10.1111/j.1365-2672.2006.03050.x

    Article  CAS  Google Scholar 

  • Tiwari K, Gupta RK (2013) Diversity and isolation of rare actinomycetes: an overview. Crit Rev Microbiol 39:256–294. doi:10.3109/1040841X.2012.709819

    Article  Google Scholar 

  • Wang X, Parsons CM (1997) Effects of processing systems on protein quality of feather meals and hog hair meal. Poult Sci 74:491–496

    Article  Google Scholar 

  • Williams CM, Richter CS Jr, MacKenzie JM, Shih JCH (1990) Isolation, identification, and characterization of a feather-degrading bacterium. Appl Environ Microbiol 56:1509–1515

    CAS  Google Scholar 

  • Williams CM, Lee CG, Garlich JD, Shih JCH (1991) Evaluation of a bacterial feather fermentation product, feather-lysate as a feed protein. Poult Sci 70:85–94

    Article  CAS  Google Scholar 

  • Younes G, Maryam S, Sara RA, Mohammad K, Azam S, Aboozar K, Montazeri- Najafabady N (2012) Identification and characterization of feather-degrading bacteria from keratin-rich wastes. Ann Microbiol 62:737–744. doi:10.1007/s13213-011-0313-7

    Article  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  Google Scholar 

  • Zwolak R, Bogdziewicz M, Rychlik L (2016) Beech masting modifies the response of rodents to forest management. Forest Ecol Manag 359:268–276. doi:10.1016/j.foreco.2015.10.017

    Article  Google Scholar 

Download references

Acknowledgments

We thank our colleagues at Guangdong Wenshi Food Co. Ltd. and at the Heshan Hilly Land Interdisciplinary Experimental Station, Chinese Academy of Sciences, for collecting the soils. This study was funded by the Guangdong Sci-Technology Project [Grant Numbers 2008B021000047, 2011B090400613, 2016B090918090] and Guangzhou Sci-Technology Project [Grant Number 201508020070].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honghui Zhu or Qing Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Zhu, H., Xie, X. et al. The feather-degrading bacterial community in two soils as revealed by a specific primer targeting serine-type keratinolytic proteases. World J Microbiol Biotechnol 32, 165 (2016). https://doi.org/10.1007/s11274-016-2125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2125-1

Keywords

Navigation