Skip to main content

Advertisement

Log in

Archetypal tryptophan-rich antimicrobial peptides: properties and applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Drug-resistant microorganisms (‘superbugs’) present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Afacan NJ, Yeung ATY, Pena OM, Hancock REW (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18:807–819

    Article  CAS  Google Scholar 

  • Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jornvall H (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854

    Article  CAS  Google Scholar 

  • Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff AS (1995) Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta Biomembr 1237:109–114

    Article  Google Scholar 

  • Ahn YJ, Jeon YJ, Shin SY (2013) Cell selectivity and anti-inflammatory activity of a novel tritrpticin analog containing homo-tryptophan peptoid residues. Bull Korean Chem Soc 34:963–966

    Article  CAS  Google Scholar 

  • Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD (1994) Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 62:5397–5403

    CAS  Google Scholar 

  • Alfred RL, Palombo EA, Panozzo JF, Bariana H, Bhave M (2013) Stability of puroindoline peptides and effects on wheat rust. World J Microbiol Biotechnol 29:1409–1419

    Article  CAS  Google Scholar 

  • Aliste MP, Maccallum JL, Tieleman DP (2003) Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-π interactions. Biochemistry 42:8976–8987

    Article  CAS  Google Scholar 

  • Andersen JH, Osbakk SA, Vorland LH, Traavik T, Gutteberg TJ (2001) Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51:141–149

    Article  CAS  Google Scholar 

  • Arias M (2015) Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions. Biochim Biophys Acta 1848:277–288

    Article  CAS  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479

    Article  CAS  Google Scholar 

  • Bi X, Wang C, Ma L, Sun Y, Shang D (2013) Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J Appl Microbiol 115:663–672

    Article  CAS  Google Scholar 

  • Blondelle SE, Takahashi E, Dinh KT, Houghten RA (1995) The antimicrobial activity of hexapeptides derived from synthetic combinatorial libraries. J Appl Bacteriol 78:39–46

    Article  CAS  Google Scholar 

  • Bozelli JC Jr, Sasahara ET, Pinto MRS, Nakaie CR, Schreier S (2012) Effect of head Group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Chem Phys Lipids 165:365–373

    Article  CAS  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Trytophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202

    Article  CAS  Google Scholar 

  • Cirioni O, Giacometti A, Silvestri C, Della Vittoria A, Licci A, Riva A, Scalise G (2006) In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:3923–3925

    Article  CAS  Google Scholar 

  • De Jesus AJ, Allen TW (2013) The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim Biophys Acta Biomembr 1828:864–876

    Article  CAS  Google Scholar 

  • Dosler S, Mataraci E (2013) In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 49:53–58

    Article  CAS  Google Scholar 

  • Enrique M, Marcos JF, Yuste M, Martínez M, Vallés S, Manzanares P (2007) Antimicrobial action of synthetic peptides towards wine spoilage yeasts. Int J Food Microbiol 118:318–325

    Article  CAS  Google Scholar 

  • Esbjörner EK, Caesar CEB, Albinsson B, Lincoln P, Nordén B (2007) Tryptophan orientation in model lipid membranes. Biochem Biophys Res Commun 361:645–650

    Article  CAS  Google Scholar 

  • Falla TJ, Hancock REW (1997) Improved activity of a synthetic indolicidin analog. Antimicrob Agents Chemother 41:771–775

    CAS  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    Article  CAS  Google Scholar 

  • Fernández-Musoles R, Castelló-Ruiz M, Arce C, Manzanares P, Ivorra MD, Salom JB (2014) Antihypertensive mechanism of lactoferrin-derived peptides: angiotensin receptor blocking effect. J Agric Food Chem 62:173–181

    Article  CAS  Google Scholar 

  • Friedrich CL, Rozek A, Patrzykat A, Hancock REW (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 276:24015–24022

    Article  CAS  Google Scholar 

  • Ghosh A, Kar RK, Jana J, Saha A, Jana B, Krishnamoorthy J, Kumar D, Ghosh S, Chatterjee S, Bhunia A (2014) Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 9:2052–2058

    Article  CAS  Google Scholar 

  • Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62:2588–2598

    Article  CAS  Google Scholar 

  • Gopal R, Na H, Seo CH, Park Y (2012) Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum. Int J Mol Sci 13:15042–15053

    Article  CAS  Google Scholar 

  • Han FF, Gao YH, Luan C, Xie YG, Liu YF, Wang YZ (2013) Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. J Dairy Sci 96:3471–3487

    Article  CAS  Google Scholar 

  • Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  Google Scholar 

  • Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10:585–606

    Article  CAS  Google Scholar 

  • Haug BE, Svendsen JS (2001) The role of tryptophan in the antibacterial activity of a 15-residue bovine lactoferricin peptide. J Pept Sci 7:190–196

    Article  CAS  Google Scholar 

  • He J, Furmanski P (1995) Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373:721–724

    Article  CAS  Google Scholar 

  • Ho YH, Sung TC, Chen CS (2012) Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteom 11(4):M111.014720

    Article  CAS  Google Scholar 

  • Hu WW, Lin ZW, Ruaan RC, Chen WY, Jin SLC, Chang Y (2013) A novel application of indolicidin for gene delivery. Int J Pharm 456:293–300

    Article  CAS  Google Scholar 

  • Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298

    Article  CAS  Google Scholar 

  • Ibrahim HR, Thomas U, Pellegrini A (2001) A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774

    Article  CAS  Google Scholar 

  • Infante VV, Miranda-Olvera AD, De Leon-Rodriguez LM, Anaya-Velazquez F, Rodriguez MC, Avila EE (2011) Effect of the antimicrobial peptide tritrpticin on the in vitro viability and growth of trichomonas vaginalis. Curr Microbiol 62:301–306

    Article  CAS  Google Scholar 

  • Kang JH, Lee MK, Kim KL, Hahm KS (1996) Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Protein Res 48:357–363

    Article  CAS  Google Scholar 

  • Khandelia H, Kaznessis YN (2007) Cation-π interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations. J Phys Chem B 111:242–250

    Article  CAS  Google Scholar 

  • Lawyer C, Pai S, Watabe M, Borgia P, Mashimo T, Eagleton L, Watabe K (1996) Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett 390:95–98

    Article  CAS  Google Scholar 

  • Lécorché P, Walrant A, Burlina F, Dutot L, Sagan S, Mallet JM, Desbat B, Chassaing G, Alves ID, Lavielle S (2012) Cellular uptake and biophysical properties of galactose and/or tryptophan containing cell-penetrating peptides. Biochim Biophys Acta Biomembr 1818:448–457

    Article  CAS  Google Scholar 

  • Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR (2007) Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 51:597–603

    Article  CAS  Google Scholar 

  • Liu YF, Han FF, Xie YG, Wang YZ (2011) Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24:1069–1078

    Article  CAS  Google Scholar 

  • López-García B, Pérez-Payá E, Marcos JF (2002) Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl Environ Microbiol 68:2453–2460

    Article  CAS  Google Scholar 

  • Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4:612–624

    Article  CAS  Google Scholar 

  • Mader JS, Smyth D, Marshall J, Hoskin DW (2006) Bovine lactoferricin inhibits basic fibroblast growth factor- and vascular endothelial growth factor165-induced angiogenesis by competing for heparin-like binding sites on endothelial cells. Am J Pathol 169:1753–1766

    Article  CAS  Google Scholar 

  • Mangoni ML, Ludovica Marcellini HG, Simmaco M (2007) Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti-microbial peptides from amphibian skin. J Pept Sci 13:603–613

    Article  CAS  Google Scholar 

  • Mccann KB, Lee A, Wan J, Roginski H, Coventry MJ (2003) The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J Appl Microbiol 95:1026–1033

    Article  CAS  Google Scholar 

  • Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J Mol Biol 274:222–236

    Article  CAS  Google Scholar 

  • Nagpal S, Gupta V, Kaur KJ, Salunke DM (1999) Structure-function analysis of tritrypticin, an antibacterial peptide of innate immune origin. J Biol Chem 274:23296–23304

    Article  CAS  Google Scholar 

  • Nagpal S, Kaur KJ, Jain D, Salunke DM (2002) Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin. Protein Sci 11:2158–2167

    Article  CAS  Google Scholar 

  • Neale C, Hsu JCY, Yip CM, Pomès R (2014) Indolicidin binding induces thinning of a lipid bilayer. Biophys J 106:L29–L31

    Article  CAS  Google Scholar 

  • Nguyen LT, Schibli DJ, Vogel HJ (2005) Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci 11:379–389

    Article  CAS  Google Scholar 

  • Omata Y, Satake M, Maeda R, Saito A, Shimazaki K, Yamauchi K, Uzuka Y, Tanabe S, Sarashina T, Mikami T (2001) Reduction of the Infectivity of toxoplasma gondii and eimeria stiedai sporozoites by treatment with bovine lactoferricin. J Vet Med Sci 63:187–190

    Article  CAS  Google Scholar 

  • Oppenheim FG, Xu T, Mcmillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477

    CAS  Google Scholar 

  • Pan WR, Chen PW, Chen YLS, Hsu HC, Lin CC, Chen WJ (2013) Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J Dairy Sci 96:7511–7520

    Article  CAS  Google Scholar 

  • Park CJ, Park CB, Hong SS, Lee HS, Lee SY, Kim SC (2000) Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse, Capsella bursa-pastoris. Plant Mol Biol 44:187–197

    Article  CAS  Google Scholar 

  • Paul M, Somkuti GA (2010) Hydrolytic breakdown of lactoferricin by lactic acid bacteria. J Ind Microbiol Biotechnol 37:173–178

    Article  CAS  Google Scholar 

  • Pellegrini A, Thomas U, Bramaz N, Klauser S, Hunziker P, Von fellenberg R (1997) Identification and isolation of a bactericidal domain chicken egg white lysozyme. J Appl Microbiol 82:372–378

    Article  CAS  Google Scholar 

  • Petersen FNR, Jensen MØ, Nielsen CH (2005) Interfacial tryptophan residues: a role for the cation-π effect? Biophys J 89:3985–3996

    Article  CAS  Google Scholar 

  • Phillips RL, Palombo EA, Panozzo JF, Bhave M (2011) Puroindolines, Pin alleles, hordoindolines and grain softness proteins are sources of bactericidal and fungicidal peptides. J Cereal Sci 53:112–117

    Article  CAS  Google Scholar 

  • Quintieri L, Pistillo BR, Caputo L, Favia P, Baruzzi F (2013) Bovine lactoferrin and lactoferricin on plasma-deposited coating against spoilage Pseudomonas spp. Innov Food Sci Emerg Technol 20:215–222

    Article  CAS  Google Scholar 

  • Rapsch K, Bier FF, Von Nickisch-Rosenegk M (2014) Rational design of artificial β-strand-forming antimicrobial peptides with biocompatible properties. Mol Pharm 11:3492–3502

    Article  CAS  Google Scholar 

  • Richardson A, De Antueno R, Duncan R, Hoskin DW (2009) Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells. Biochem Biophys Res Commun 388:736–741

    Article  CAS  Google Scholar 

  • Robinson WE, Mcdougall B, Tran D, Selsted ME (1998) Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol 63:94–100

    CAS  Google Scholar 

  • Rokitskaya TI, Kolodkin NI, Kotova EA, Antonenko YN (2011) Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochim Biophys Acta Biomembr 1808:91–97

    Article  CAS  Google Scholar 

  • Rozek A, Friedrich CL, Hancock REW (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39:15765–15774

    Article  CAS  Google Scholar 

  • Rozek A, Powers JPS, Friedrich CL, Hancock REW (2003) Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 42:14130–14138

    Article  CAS  Google Scholar 

  • Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD (2009) Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents 34:457–461

    Article  CAS  Google Scholar 

  • Rydberg HA, Carlsson N, Nordén B (2012) Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function. Biochem Biophys Res Commun 427:261–265

    Article  CAS  Google Scholar 

  • Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48:3112–3118

    Article  CAS  Google Scholar 

  • Saint-Jean SR, Prieto SIP, López-Expósito I, Ramos M, de Las Heras AI, Recio I (2012) Antiviral activity of dairy proteins and hydrolysates on salmonid fish viruses. Int Dairy J 23:24–29

    Article  CAS  Google Scholar 

  • Salay LC, Procopio J, Oliveira E, Nakaie CR, Schreier S (2004) Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Lett 565:171–175

    Article  CAS  Google Scholar 

  • Salay LC, Ferreira M, Oliveira ON, Nakaie CR, Schreier S (2012) Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Coll Surf B 100:95–102

    Article  CAS  Google Scholar 

  • Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ (2014) Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol Bioeng 111:37–49

    Article  CAS  Google Scholar 

  • Schibli DJ, Hwang PM, Vogel HJ (1999) Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry 38:16749–16755

    Article  CAS  Google Scholar 

  • Schibli DJ, Epand RF, Vogel HJ, Epand RM (2002) Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem Cell Biol 80:667–677

    Article  CAS  Google Scholar 

  • Schibli DJ, Nguyen LT, Kernaghan SD, Rekdal Ø, Vogel HJ (2006) Structure-function analysis of tritrpticin analogs: potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Biophys J 91:4413–4426

    Article  CAS  Google Scholar 

  • Schluesener HJ, Radermacher S, Melms A, Jung S (1993) Leukocytic antimicrobial peptides kill autoimmune T cells. J Neuroimmunol 47:199–202

    Article  CAS  Google Scholar 

  • Schmidt N, Mishra A, Lai GH, Wong GCL (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584:1806–1813

    Article  CAS  Google Scholar 

  • Selsted ME, Brown DM, Delange RJ, Harwig SS, Lehrer RI (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem 260:4579–4584

    CAS  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WJ, Tang Y-Q, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295

    CAS  Google Scholar 

  • Sengupta J, Saha S, Khetan A, Sarkar SK, Mandal SM (2012) Effects of lactoferricin B against keratitis-associated fungal biofilms. J Infect Chemother 18:698–703

    Article  CAS  Google Scholar 

  • Sharma R, Lomash S, Salunke DM (2013) Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties. PLoS One 8:e75582

    Article  CAS  Google Scholar 

  • Shin SY (2013) Prokaryotic selectivity, bactericidal mechanism and lps-neutralizing activity of lys-linked dimeric peptide of indolicidin C-terminal hexapeptide. Bull Korean Chem Soc 34:2187–2190

    Article  CAS  Google Scholar 

  • Strøm MB, Rekdal Ø, Svendsen JS (2000) Antibacterial activity of 15-residue laccoferricin derivatives. J Pept Res 56:265–274

    Article  Google Scholar 

  • Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolocidin. FEMS Microbiol Lett 160:91–96

    Article  CAS  Google Scholar 

  • Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N (1996) Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395:48–52

    Article  CAS  Google Scholar 

  • Sun D, Forsman J, Lund M, Woodward CE (2014) Effect of arginine-rich cell penetrating peptides on membrane pore formation and life-times: a molecular simulation study. Phys Chem Chem Phys 16:20785–20795

    Article  CAS  Google Scholar 

  • Tomita M, Takase M, Bellamy W, Shimakura S (1994) A review: the active peptide of lactoferrin. Acta Paediatr Jpn (Overseas Ed) 36:585–591

    Article  CAS  Google Scholar 

  • Trinquier G, Sanejouand YH (1998) Which effective property of amino acids is best preserved by the genetic code? Protein Eng 11:153–169

    Article  CAS  Google Scholar 

  • Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HHG, Ruaan RC (2009) Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol 392:837–854

    Article  CAS  Google Scholar 

  • Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS (2011) Identification of lactoferricin B intracellular targets using an escherichia coli proteome chip. PLoS One 6:e28197

    Article  CAS  Google Scholar 

  • Ulvatne H, Haukland HH, Olsvik O, Vorland LH (2001) Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett 492:62–65

    Article  CAS  Google Scholar 

  • Ulvatne H, Samuelsen Ø, Haukland HH, Krämer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384

    CAS  Google Scholar 

  • Végh AG, Nagy K, Bálint Z, Kerényi A, Rákhely G, Váró G, Szegletes Z (2011) Effect of antimicrobial peptide-amide: indolicidin on biological membranes. J Biomed Biotechnol 2011:670589

    Article  CAS  Google Scholar 

  • Wakabayashi H, Hiratani T, Uchida K, Yamaguchi H (1996) Antifungal spectrum and fungicidal mechanism of an N-terminal peptide of bovine lactoferrin. J Infect Chemother 1:185–189

    Article  CAS  Google Scholar 

  • Walrant A, Correia I, Jiao CY, Lequin O, Bent EH, Goasdoué N, Lacombe C, Chassaing G, Sagan S, Alves ID (2011) Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochim Biophys Acta Biomembr 1808:382–393

    Article  CAS  Google Scholar 

  • Wang KF, Nagarajan R, Camesano TA (2015) Differentiating antimicrobial peptides interacting with lipid bilayer: molecular signatures derived from quartz crystal microbalance with dissipation monitoring. Biophys Chem 196:53–57

    Article  CAS  Google Scholar 

  • Wei S-Y, Wu J-M, Kuo Y-Y, Chen H-L, Yip B-S, Tzeng S-R, Cheng J-W (2006) Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity. J Bacteriol 188:328–334

    Article  CAS  Google Scholar 

  • Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448–1456

    Article  CAS  Google Scholar 

  • Yang ST, Yub Shin S, Kim YC, Kim Y, Hahm KS, Kim JI (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Commun 296:1044–1050

    Article  CAS  Google Scholar 

  • Yang ST, Shin SY, Lee CW, Kim YC, Hahm KS, Kim JI (2003) Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. FEBS Lett 540:229–233

    Article  CAS  Google Scholar 

  • Yang ST, Shin SY, Hahm KS, Kim JI (2006) Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim Biophys Acta Biomembr 1758:1580–1586

    Article  CAS  Google Scholar 

  • Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, Lehrer RI, Wagar EA (2000) Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19:187–194

    Article  CAS  Google Scholar 

  • Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37:14713–14718

    Article  CAS  Google Scholar 

  • Yoo YC, Watanabe R, Koike Y, Mitobe M, Shimazaki KI, Watanabe S, Azuma I (1997) Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: involvement of reactive oxygen species. Biochem Biophys Res Commun 237:624–628

    Article  CAS  Google Scholar 

  • Zhang JX, Zhang SF, Wang TD, Guo XJ, Hu RL (2007) Mammary gland expression of antibacterial peptide genes to inhibit bacterial pathogens causing mastitis. J Dairy Sci 90:5218–5225

    Article  CAS  Google Scholar 

  • Zhu WL, Lan H, Park Y, Yang ST, Kim JI, Park IS, You HJ, Lee JS, Park YS, Kim Y, Hahm KS, Shin SY (2006) Effects of Pro → peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Biochemistry 45:13007–13017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Bhave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shagaghi, N., Palombo, E.A., Clayton, A.H.A. et al. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J Microbiol Biotechnol 32, 31 (2016). https://doi.org/10.1007/s11274-015-1986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-1986-z

Keywords

Navigation