Skip to main content
Log in

Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Propolis presents many biological properties, including antibacterial activities, and has been proposed as an additive in ruminant nutrition. Twenty bacterial strains, previously isolated from enrichments of Brazilian cow rumen contents in the presence of different propolis extracts (LLOS), were characterized using phenotyping and 16S rRNA identification. Seven strains were assigned to Streptococcus sp., most likely S. bovis, and were all degrading starch. One amylolytic lactate-utilizing strain of Selenomonas ruminantium was also found. Two strains of Clostridium bifermentans were identified and showed proteolytic activity. Two strains were assigned to Mitsuokella jalaludinii and were saccharolytic. One strain belonged to a Bacillus species and seven strains were affiliated with Escherichia coli. All of the 20 strains were able to use many sugars, but none of them were able to degrade the polysaccharides carboxymethylcellulose and xylans. The effect of three propolis extracts (LLOS B1, C1 and C3) was tested on the in vitro growth of four representative isolates of S. bovis, E. coli, M. jalaludinii and C. bifermentans. The growth of S. bovis, E. coli and M. jalaludinii was not affected by the three propolis extracts at 1 mg ml−1. C. bifermentans growth was completely inhibited at this LLOS concentration, but this bacterium was partially resistant at lower concentrations. LLOS C3, with the lower concentration of phenolic compounds, was a little less inhibitory than B1 and C1 on this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguiar SC, Zeoula LM, Moura LPP, Prado IN, Paula EM, Samensari RB (2012) Performance, digestibility, microbial production and carcass characteristics of feedlot young bulls fed diets containing propolis. Acta Sci Anim Sci 34:393–400

    Article  Google Scholar 

  • Aguiar SC, Zeoula LM, Franco SL, Peres LP, Arcuri PB, Forano E (2013) Antimicrobial activity of Brazilian propolis extracts against rumen bacteria in vitro. World J Microbiol Biotechnol 29:1951–1959

    Article  Google Scholar 

  • Balcells J, Aris A, Serrano A, Seradj AR, Crespo J, Devant M (2012) Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. J Anim Sci 90:4975–4984

    Article  CAS  Google Scholar 

  • Bankova V, Marcucci MC, Castro SL (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3–15

    Article  CAS  Google Scholar 

  • Bonvehí JS, Gutiérrez AL (2012) The antimicrobial effects of propolis collected in different regions in the Basque Country (Northern Spain). World J Microbiol Biotechnol 28:1351–1358

    Article  Google Scholar 

  • Broudiscou LP, Papon Y, Broudiscou AF (2000) Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Anim Feed Sci Technol 87:263–277

    Article  CAS  Google Scholar 

  • Broussolle V, Forano E, Gaudet G, Ribot Y (1994) Gene sequence and analysis of protein domains of EGB, a novel family E endoglucanase from Fibrobacter succinogenes S85. FEMS Microbiol Lett 124:439–447

    Article  CAS  Google Scholar 

  • Chassard C, Scott KP, Marquet P, Martin JC, Del’homme C, Dapoigny M, Flint HJ, Bernalier-Donadille A (2008) Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol 66:496–504

    Article  CAS  Google Scholar 

  • Chaucheyras-Durand F, Masséglia S, Fonty G (2005) Effect of the microbial feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of rumen bacteria grown in vitro. Curr Microbiol 50:96–101

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucl Acids Res 41(Database issue):D633–D642

  • Costa JBG Jr, Zeoula LM, Franco SL, de Moura LPP, Valero MV, Simioni FL, da Paula EM, Samensari RB (2012) Effect of propolis product on digestibility and ruminal parameters in buffaloes consuming a forage-based diet. Ital J Anim Sci 11:441–448

    CAS  Google Scholar 

  • Cui K, Lu W, Zhu L, Shen X, Huang J (2013) Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity. Biochem Biophys Res Commun 435:289–294

    Article  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  • Cushnie TP, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107

    Article  CAS  Google Scholar 

  • Devillard E, Newbold CJ, Scott KP, Forano E, Wallace RJ, Jouany JP, Flint HJ (1999) A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from Gram-positive bacteria. FEMS Microbiol Lett 181:145–152

    Article  CAS  Google Scholar 

  • Ferens WA, Hovde CJ (2011) Escherichia coli O157:H7: Animal reservoir and sources of human infection. Foodborne Pathog Dis 8:465–487

    Article  Google Scholar 

  • Flythe M, Kagan I (2010) Antimicrobial effect of red clover (Trifolium pratense) phenolic extract on the ruminal hyper ammonia-producing bacterium, Clostridium sticklandii. Curr Microbiol 61:125–131

    Article  CAS  Google Scholar 

  • Franco SL, Bueno JHF (1999) Otimização de processo extrativo de própolis. Infarma 11:48–51

    Google Scholar 

  • Hernandez JD, Scott PT, Shephard RW, Al Jassim RAM (2008) The characterization of lactic acid producing bacteria from the rumen of dairy cattle grazing on improved pasture supplemented with wheat and barley grain. J Appl Microbiol 104:1754–1763

    Article  CAS  Google Scholar 

  • Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7:1069–1079

    Article  Google Scholar 

  • Jurd L, Stevens KL, King AD Jr, Mihara K (1971) Antimicrobial properties of natural phenols and related compounds. II. Cinnamylated phenols and their hydrogenation products. J Pharm Sci 60:1753–1755

    Article  CAS  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507

    Article  CAS  Google Scholar 

  • Lan GQ, Ho YW, Abdullah N (2002) Mitsuokella jalaludinii sp nov., from the rumens of cattle in Malaysia. Int J Syst Evol Microbiol 52:713–718

    Article  CAS  Google Scholar 

  • Leedle JA, Hespell RB (1980) Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol 39:709–719

    CAS  Google Scholar 

  • Mamuad LL, Kim SH, Lee SS, Cho KK, Jeon CO, Lee S-S (2012) Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircus coreanae). J Microbiol 50:925–931

    Article  CAS  Google Scholar 

  • Netíková L, Bogusch P, Heneberg P (2013) Czech ethanol-free propolis extract displays inhibitory activity against a broad spectrum of bacterial and fungal pathogens. J Food Sci 78:M1421–M1429

    Article  Google Scholar 

  • Odenyo AA, Osuji PO (1998) Tannin-tolerant ruminal bacteria from east African ruminants. Can J Microbiol 44:905–909

    Article  CAS  Google Scholar 

  • Oeztuerk H, Emre B, Sagmanligil V, Piskin I, Fidanci UR, Pekcan M (2010) Effects of nisin and propolis on ruminal fermentation in vitro. J Anim Vet Adv 9:2752–2758

    Article  CAS  Google Scholar 

  • Oliveira MG, Feitosa Brito JR, Carvalho RR, Guth BEC, Gomes TAT, Vieira MAM, Kato MAMF, Ramos II, Vaz TMI, Irino K (2007) Water buffaloes (Bubalus bubalis) identified as an important reservoir of Shiga toxin-producing Escherichia coli in Brazil. Appl Environ Microbiol 73:5945–5948

    Article  CAS  Google Scholar 

  • Parkar SG, Trower TM, Stevenson DE (2013) Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–19

    Article  CAS  Google Scholar 

  • Prado OPP, Zeoula LM, Moura LPP, Franco SL, Prado IN, Gomes HCC (2010a) Digestibilidade e parâmetros ruminais de dietas à base de forragem com adição de própolis e monensina sódica para bovinos. Rev Bras Zootec 39:1336–1345

    Article  Google Scholar 

  • Prado OPP, Zeoula LM, Moura LPP, Franco SL, Prado IN, Jacobi G (2010b) Efeito da adição de própolis e monensina sódica na digestibilidade e características ruminais em bubalinos alimentados com dieta à base de forragem. Rev Bras Zootec 39:2055–2065

    Article  Google Scholar 

  • Prado OPP, Zeoula LM, Moura LPP, Franco SL, Paiva SB, Arcuri PB (2010c) Isolation and expeditious morphological, biochemical and kinetic characterization of propolis-tolerant ruminal bacteria. Rev Bras Zootec 39:2048–2054

    Article  Google Scholar 

  • Ríspoli TB, Rodrigues IL, Martins Neto RG, Kazama R, Prado OPP, Zeoula LM, Arcuri PB (2009) Protozoários ciliados do rúmen de bovinos e bubalinos alimentados com dietas suplementadas com monensina ou própolis. Pesqui Agropecu Bras 44:92–97

    Article  Google Scholar 

  • Russell JB, Bottje WG, Cotta MA (1981) Degradation of protein by mixed cultures of rumen bacteria: identification of Streptococcus bovis as an actively proteolytic rumen bacterium. J Anim Sci 53:242–252

    CAS  Google Scholar 

  • Sankar M, Delgado O, Mattiasson B (2003) Isolation and characterization of solventogenic, cellulase-free xylanolytic Clostridia from cow rumen. Water Sci Technol 48:185–188

    CAS  Google Scholar 

  • Santana HF, Teixeira Barbosa AA, Ferreira SO, Mantovani HC (2012) Bactericidal activity of ethanolic extracts of propolis against Staphylococcus aureus isolated from mastitic cows. World J Microbiol Biotechnol 28:485–491

    Article  Google Scholar 

  • Scazzocchio F, D’Auria FD, Alessandrini D, Pantanella F (2006) Multifactorial aspects of antimicrobial activity of propolis. Microbiol Res 161:327–333

    Article  CAS  Google Scholar 

  • Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A (2003) Reappraisal of the taxonomy of the Streptococcus bovis Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp gallolyticus subsp nov., S-gallolyticus subsp macedonicus subsp nov and S-gallolyticus subsp pasteurianus subsp nov. Int J Syst Evol Microbiol 53:631–645

    Article  CAS  Google Scholar 

  • Sforcin JM, Fernandes A, Lopes CAM, Bankova V, Funari SRC (2000) Seasonal effect on Brazilian propolis antibacterial activity. J Ethnopharmacol 73:243–249

    Article  CAS  Google Scholar 

  • Souza RL, Nishimura LS, Guth BEC (2007) Uncommon Shiga toxin-producing Escherichia coli serotype O165:HNM as cause of hemolytic uremic syndrome in São Paulo, Brazil. Diag Microbiol Infec Dis 59:223–225

    Article  Google Scholar 

  • Stepanovic S, Antic N, Dakic I, Svabic-Vlahovic M (2003) In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol Res 158:353–357

    Article  Google Scholar 

  • Stradiotti Júnior D, Queiroz AC, Lana RP, Pacheco CG, Eifert EC, Nunes PMM (2004) Ação da própolis sobre a desaminação de aminoácidos e a fermentação ruminal. R Bras Zootec 33:1086–1092

    Article  Google Scholar 

  • Sundset MA, Praesteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb Ecol 54:424–438

    Article  Google Scholar 

  • Taghavi-Nezhad M, Alipour D, Flythe MD, Zamani P, Khodakaramian G (2013) The effect of essential oils of Zataria multiflora and Mentha spicata on the in vitro rumen fermentation, and growth and deaminative activity of amino acid-fermenting bacteria isolated from Mehraban sheep. Animal Prod Sci. http://dx.doi.org/10.1071/AN12244

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Wallace RJ (2004) Antimicrobial properties of plant secondary metabolites. Proc Nutr Soc 63:621–629

    Article  CAS  Google Scholar 

  • Wallace RJ, Onodera R, Cotta MA (1997) Metabolism of nitrogen-containing compounds. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem, 2nd edn. Chapman Hall, London, pp 283–328

    Chapter  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 73(16):5261–5267. doi:10.1128/AEM.00062-07

Download references

Acknowledgments

The authors thank G. Andant and G. Lopes for excellent technical assistance and the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Empresa Brasileira de Pesquisa Agropecuária (Embrapa) for granting the scholarship to S.C. Aguiar (CNPq/Labex Embrapa 201720/2010-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Forano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Aguiar, S.C., Zeoula, L.M., do Prado, O.P.P. et al. Characterization of rumen bacterial strains isolated from enrichments of rumen content in the presence of propolis. World J Microbiol Biotechnol 30, 2917–2926 (2014). https://doi.org/10.1007/s11274-014-1719-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1719-8

Keywords

Navigation