Skip to main content

Advertisement

Log in

Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the effects of Bacillus subtilis SC02 supplement on water quality, microbial community diversity and structure in a grass carp (Ctenopharyngodon idellus) culture. Our selected strain, B. subtilis SC02, significantly reduced ammonia, nitrite and total nitrogen levels in water over an extended period compared with the control group. Pyrosequencing showed that the Shannon diversity index (Shannon) and species richness estimators (Chao) of the treatment group were higher, indicating that bacterial richness was significantly increased in the treatment group. The phyla Proteobacteria, Bacteroidetes and Actinobacteria were dominant in the treatment groups, accounting for 45, 21.9 and 21.9 % of the sequence reads, respectively. However, in sharp contrast, the control fishes were predominantly occupied by Proteobacteria (82.1 %) and Firmicutes (8.4 %). At the genus level, the microbial communities were different between the control and treatment groups, although the two groups shared similar genera. Additionally, some genera (such as Tepidimonas, Variovorax, Roseomonas, Rubritepida, Nitrobacter, etc.) only appeared in the treatment group, and many other genera only existed in the control group. Therefore, we conclude that the addition of the SC02 strain in water improves water quality, which may ultimately be a result of changes in microbial community diversity in grass carp cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Muzquiz J (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186

    Article  Google Scholar 

  • Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (1992) The prokaryotes. Springer, New York

    Google Scholar 

  • Cao L, Wang W, Yang Y, Yang C, Yuan Z, Xiong S, Diana J (2007) Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ Sci Pollut Res 14(7):452–462

    Article  CAS  Google Scholar 

  • Casserly C, Erijman L (2003) Molecular monitoring of microbial diversity in an UASB reactor. Int Biodeterior Biodegradation 52(1):7–12

    Article  CAS  Google Scholar 

  • Cole DW, Cole R, Gaydos SJ, Gray J, Hyland G, Jacques ML, Powell-Dunford N, Sawhney C, Au WW (2009) Aquaculture: environmental, toxicological, and health issues. Int J Hyg Environ Health 212(4):369–377

    Article  CAS  Google Scholar 

  • Collier L, Balows A, Sussman M (1998) Topley and Wilson’s microbiology and microbial infections, vol 2, Systematic Bacteriology, vol 2. Arnold, London

    Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220

    Article  Google Scholar 

  • Dalmin G, Kathiresan K, Purushothaman A (2001) Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem. Indian J Exp Biol 39:939–942

    CAS  Google Scholar 

  • DeAngelis KM, Wu CH, Beller HR, Brodie EL, Chakraborty R, DeSantis TZ, Fortney JL, Hazen TC, Osman SR, Singer ME, Tom LM, Andersen GL (2011) PCR amplification-independent methods for detection of microbial communities by the high-density microarray phylochip. Appl Environ Microbiol 77(18):6313–6322

    Article  CAS  Google Scholar 

  • Diaz PI, Dupuy AK, Abusleme L, Reese B, Obergfell C, Choquette L, Dongari-Bagtzoglou A, Peterson DE, Terzi E, Strausbaugh LD (2012) Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol Oral Microbiol 27(3):182–201

    Article  CAS  Google Scholar 

  • Enell M, Lof J (1983) Environmental impact of aquaculture: sediment and nutrient loadings from fish cage culture farming. Vatten 39:364–375

    CAS  Google Scholar 

  • EPBC (Environmental Protection Bureau of China) (2002) Methods for monitor and analysis of water and wastewater, 4th edn. China Environmental Science Press, Beijing

    Google Scholar 

  • Fuller R (1989) Probiotics in man and animal. J Appl Bacteriol 66:365–378

    Article  CAS  Google Scholar 

  • Goodfellow M, Haynes JA (1984) Actinomycetes in marine sedi-ments. In: Oritz–Oritz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomed ical aspects of actinomycetes. Academic press, New York, pp 453–472

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Stanley TW (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Hu M, Wang XH, Wen XH, Xia Y (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol 117:72–79

    Article  CAS  Google Scholar 

  • Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898

    Article  CAS  Google Scholar 

  • Huson DH, Mitra S, Weber N, Ruscheweyh H, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    Article  CAS  Google Scholar 

  • Hutalle-Schmelzer KML, Zwirnmann E, Krüger A, Grossart HP (2010) Enrichment and cultivation of pelagic bacteria from a humic lake using phenol and humic matter additions. FEMS Microbiol Ecol 72:58–73

    Article  CAS  Google Scholar 

  • Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie Van Leeuwenhoek 94:51–62

    Article  CAS  Google Scholar 

  • Kim TS, Kim HS, Kwon S, Park HD (2011) Nitrifying bacterial community structure of a full-scale integrated fixed-film activated sludge process as investigated by pyrosequencing. J Microbiol Biotechnol 21(3):293–298

    CAS  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  Google Scholar 

  • Labbé N, Laurin V, Juteau P, Parent S, Villemur R (2007) Microbiological community structure of the biofilm of a methanol-fed, marine denitrification system, and identification of the methanol-utilizing microorganisms. Microbial Ecol 53:621–630

    Article  Google Scholar 

  • Lemarchand K, Berthiaume F, Maynard C, Harel J, Payment P, Bayardelle P, Masson L, Brousseau R (2005) Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays. J Microbiol Methods 63(2):115–126

    Article  CAS  Google Scholar 

  • Lemarchand C, Jardillier L, Carrias JF, Richardot M, Debroas D, Ngando TS, Amblard C (2006) Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems. FEMS Microbiol Ecol 57:442–451

    Article  CAS  Google Scholar 

  • Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H (2012) Long-term balanced fertilization decreases arbuscular Mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol 46(11):5764–5771

    Article  CAS  Google Scholar 

  • Lu XY, Zhang T, Fang HHP, Leung KMY, Zhang G (2011) Biodegradation of naphthalene by enriched marine denitrifying bacteria. Int Biodeterior Biodegradation 65:204–211

    Article  CAS  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12(8):2165–2179

    CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  Google Scholar 

  • Moriarty DJW (1997) The role of microorganisms in aquaculture ponds. Aquaculture 15:333–349

    Article  Google Scholar 

  • Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358

    Article  Google Scholar 

  • Nold SC, Zwart G (1998) Patterns and governing forces in aquatic microbial communities. Aquat Ecol 32:17–35

    Article  CAS  Google Scholar 

  • Nora’aini A, Wahab MA, Jusoh A, Hasan MR, Ghazali N, Kamaruzaman K (2005) Treatment of aquaculture wastewater using ultra-low pressure asymmetric polyethersulfone (PES) membrane. Desalination 185:317–326

    Article  Google Scholar 

  • Oerther DB, De los Reyes FL, De los Reyes MF, Raskin L (2001) Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining. Water Res 35(14):3325–3336

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  Google Scholar 

  • Roberts SB, Hauser L, Seeb LW, Seeb JE (2012) Development of genomic resources for Pacific Herring through targeted transcriptome pyrosequencing. PLoS ONE 7(2):e30908

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1(4):283–290

    CAS  Google Scholar 

  • Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608

    Article  CAS  Google Scholar 

  • Sahu MK, Swarnakumar NS, Sivakumar K, Thangaradjou T, Kannan L (2008) Probiotics in aquaculture: importance and future perspectives. Indian J Microbiol 48:299–308

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequenc-ing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  CAS  Google Scholar 

  • Shapleigh JP (2011) Oxygen control of nitrogen oxide respiration, focusing on α-proteobacteria. Biochem Soc Trans 39:179–183

    Article  CAS  Google Scholar 

  • Shen WY, Fu LL, Li WF, Zhu YR (2010) Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquac Res 41:1691–1698

    Article  CAS  Google Scholar 

  • Shi HP, Lee CM (2006) Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removing bacteria. Int Biodeterior Biodegradation 57:121–128

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  Google Scholar 

  • Stackebrandt E (1992) Unifying phylogeny and phenotypic diversity. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 19–47

    Google Scholar 

  • Sun LP, Liu Y, Jin H (2009) Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecol Eng 35(1):135–140

    Article  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71:495–548

    Article  CAS  Google Scholar 

  • Wang YB, Xu ZR, Xia MS (2005) The effectiveness of commercial probiotics in northern white shrimp (Penaeus vannamei L) ponds. Fish Sci 71:103–1039

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  Google Scholar 

  • Wang YB, Li JR, Lin J (2008) Probiotics in aquaculture: challenges and outlook. Aquaculture 281:1–4

    Article  Google Scholar 

  • Wang P, Yuan Y, Li Q, Yang J, Zheng Y, He M, Geng H, Xiong L, Liu D (2012) Isolation and immobilization of new aerobic denitrifying bacteria. Int Biodeterior Biodegradation 10.1016/jibiod201206008

  • Wang X, Hu M, Xia Y, Wen X, Ding K (2012b) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78(19):7042–7047

    Article  CAS  Google Scholar 

  • Zheng JJ, Shen T, Fu LQ, Deng B, Li WF (2012) Identification and denitrification characteristics of a denitrifer Pseudomonas Putida F6. China Acta Hydrobiol Sinica 36:161–167

    CAS  Google Scholar 

  • Zinder SH (1998) Bacterial diversity. In: Balows A, Duerden BI (eds) Topley and Wilson’s microbiology and microbial infections, vol 2, systematic bacteriology. Arnold, London, pp 125–147

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program, P. R. China (973 Program, 2009CB118705), and the Natural Science Foundation of Zhejiang Province (Grant No. Y3090171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifen Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Fu, L., Deng, B. et al. Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World J Microbiol Biotechnol 29, 1645–1653 (2013). https://doi.org/10.1007/s11274-013-1327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1327-z

Keywords

Navigation