Skip to main content
Log in

Characterization of medium chain length (R)-3-hydroxycarboxylic acids produced by Streptomyces sp. JM3 and the evaluation of their antimicrobial properties

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-3-Hydroxycarboxylic acids, chiral enantiomers of bacterial polyhydroxyalkanoates (PHA), may be valuable synthons for the production of numerous industrial materials such as β-lactams, fungicides, flavors, pheromones and vitamins. In this study, (R)-3-hydroxycarboxylic acid [(R)-3HAs)] synthons were produced by Streptomyces sp. JM3 (JN166713) under batch fermentation. Initial confirmation of PHA production was achieved by matrix assisted laser desorption ionization-time of flight mass spectroscopy and gas chromatography/mass spectroscopy (GC/MS). Subsequently, (R)-3HAs were produced by in vivo depolymerization and the monomers were separated using acid precipitation and anion exchange chromatography. The (R)-3HAs were identified by GC/MS as 3-trimethylsiloxy esters of decanoic, octanoic and butanoic acids. This was further supported by 13C nuclear magnetic resonance spectrometry. The (R)-3HAs exhibited antimicrobial activity against Escherichia coli O157:H7, Listeria monocytogenes (ATCC 7644) and Salmonella typhimurium (ATCC 14028) with minimum inhibitory concentration ranging from 12.5 to 25 mg ml−1. However, the minimum bactericidal concentration data suggest that the (R)-3HAs may be bactericidal for E. coli O157:H7 and bacteriostatic for S. typhimurium and L. monocytogenes. Furthermore, the major purified synthon was shown to minimize the invasion of fibroblasts by S. typhimurium (ATCC 14028) [p < 0.05], using the MTT assay [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen AD, Anderson WA, Ayorinde FO, Eribo BE (2010) Biosynthesis and characterization of copolymer poly(3HB-co-3HV) from saponified Jatropha curcas oil by Pseudomonas oleovorans. J Ind Microbiol Biotechnol 37:849–856

    Article  CAS  Google Scholar 

  • Allen AD, Anderson WA, Ayorinde FO, Eribo BE (2011) Isolation and characterization of an Extracellular Thermoalkanophilic P(3HB-co-3HV) Depolymerase from Streptomyces sp. IN1. Int Biodeter Biodegr 65:777–785

    Article  CAS  Google Scholar 

  • Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456

    Article  CAS  Google Scholar 

  • Atkins GJ, Haynes DR, Geary SM, Loric M, Crotti TN, Findlay DM (2000) Coordinated cytokine expression by stromal and hematopoietic cells during human osteoclast formation. Bone 26:653–661

    Article  CAS  Google Scholar 

  • Ayorinde FO, Saeed KA, Price E, Morrow A, Collins WE, Pollack SK, McInnis F, Eribo BE (1998) Production of poly-(β-hydroxybutyrate) from saponified Vernonia galamensis oil by Alcaligenes eutrophus. J Ind Microbiol Biotechnol 21:46–50

    Article  CAS  Google Scholar 

  • Bai XC, Lu D, Liu AL, Zhang ZM (2005) Reactive oxygen species stimulates receptor activator of NF-Κb ligand expression in osteoblast. J Biol Chem 280:17497–17506

    Article  CAS  Google Scholar 

  • Berchmans JH, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Biores Technol 99:1716–1721

    Article  CAS  Google Scholar 

  • Bergsson G, Steingrimsson O, Thormar H (2002) Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. Int J Antimicrob Agents 42:258–262

    Article  Google Scholar 

  • Chitemerere TA, Mukanganyama S (2011) In vitro antibacterial activity of selected medicinal plant from Zimbabwe. Afr J Plant Sci Biotechnol 5:1–7

    Google Scholar 

  • de Roo G, Kellerhals M, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methyl esters via hydrolytic degradation of polyhydroxyalkanoates synthesized by pseudomonads. Biotechnol Bioeng 77:717–722

    Article  Google Scholar 

  • Defroidt T, Boon N, Sorgeloos P, Verstraete W, Boddier P (2009) Short chain fatty acids and poly-β-hydroxyalkanoates (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685

    Article  Google Scholar 

  • Deurenberg RH, Vink C, Kalenic S, Friedrich AW, Bruggeman CA, Stobberingh EE (2007) The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13:222–235

    Article  CAS  Google Scholar 

  • Gottlib D, Shirling EB (1967) Cooperative description of type cultures of Streptomyces. Int J Syst Bacteriol 17:315–322

    Article  Google Scholar 

  • Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Biores Technol 67:7382

    Article  Google Scholar 

  • Haas W, Mittelbach M (2000) Detoxification experiments with the seed oil from Jatropha curcas L. Ind Crops Prod 12:111–118

    Article  CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) Characterization of two 3-ketothiolase possessing differing substrate specificities in the polyhydroxyalkanoates synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:91

    Article  CAS  Google Scholar 

  • He X, Ahn J (2011) Survival and virulence properties of multiple antibiotic-resistant Salmonella typhimurium under simulated gastrointestinal conditions. Int J Food Sci Tech 46:2164–2172

    Article  CAS  Google Scholar 

  • Kannan LV, Rehacek Z (1970) Formation of poly-β-hydroxybutyrate by Actinomycetes. Indian J Biochem Biophys 7:126–129

    CAS  Google Scholar 

  • Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) D-β-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci 97:5440–5444

    Article  CAS  Google Scholar 

  • Levy SB (2002) Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother 49:25–30

    Article  CAS  Google Scholar 

  • Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Biores Technol 98:2313–2320

    Article  CAS  Google Scholar 

  • Manna A, Banarjee R, Paul AK (1999) Accumulation of poly(3-hydroxybutyric acid) by some soil Streptomyces. Curr Microbiol 39:153–158

    Article  CAS  Google Scholar 

  • Martinson E, Samuelson O (1970) Automatic chromatography of hydroxy acids on anion-exchange resins. Chromatographia 3:405–410

    Article  Google Scholar 

  • Nath A, Bhat S, Devle J, Desai A (2005) Enhanced production of 3-hydroxybutyric acid (3-HB) by in vivo depolymerization of polyhydroxybutyric acid in 3-HB dehydrogenase mutants of Methylobacterium spp. ZP24. Ann Microbiol 55:107–111

    CAS  Google Scholar 

  • Raj SM, Rathnasingh C, Jo JE, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  • Rathore V, Madras G (2007) Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel 86:2650–2659

    Article  CAS  Google Scholar 

  • Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartman R, Felber H, Zinn M (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    Article  CAS  Google Scholar 

  • Ren Q, Katinka R, Thöny-Meyer L, Zinn M (2010) Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl Microbiol Biotechnol 87:41–52

    Article  CAS  Google Scholar 

  • Ricke SC (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    CAS  Google Scholar 

  • Ruth K, Grubelnik A, Hartmann R, Egil T, Zinn M, Ren Q (2007) Efficient production of (R)-3-hydroxycarboxylic acids by biotechnological conversion of polyhydroxyalkanoates and their purification. Biomacromolecules 8:279–286

    Article  CAS  Google Scholar 

  • Sandoval A, Arias-Barrau E, Bermejo F, Canedo L, Naharro G, Olivera E, Luengo J (2005) Production of 3-hydroxy-n-phenylalkanoic acids by genetically engineered strains of Pseudomonas putida. Appl Microbiol Biotechnol 67:97–105

    Article  CAS  Google Scholar 

  • Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324

    Article  CAS  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Sys Bacteriol 16:313–340

    Article  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay J, Guay M, Ramsay B (2009) Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J Biotechnol 143:262–267

    Article  CAS  Google Scholar 

  • Van Immerseel F, De Buck J, Pasmans F, Velge P, Bottrew E, Fievez V et al (2003) Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol 85:237–248

    Article  Google Scholar 

  • Verma S, Bhatia Y, Valappil SP, Roy I (2002) A possible role of poly-3-hydroxybutyric acid in antibiotic production in Streptomyces. Arch Microbiol 179:66–69

    Article  CAS  Google Scholar 

  • Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048

    Article  CAS  Google Scholar 

  • Zhang X, Aubin JE, Kim TH, Payne U, Chiu B, Inman R (2004) Synovial fibroblasts infected with Salmonella enterica Serovar Typhimurium mediate osteoclast differentiation and activation. Infect Immun 72:7183–7189

    Article  CAS  Google Scholar 

  • Zhao Y, Zou B, Shi ZY, Wu Q, Chen GQ (2007) The effects of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MCM-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 28:3063–3073

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to Dr. Oumar Diall from the University of Mali for the gift of the Jatropha curcas oil. Some aspects of this work were supported through the Howard Hughes Core Laboratory at Howard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Broderick. E. Eribo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, A.D., Daley, P., Ayorinde, F.O. et al. Characterization of medium chain length (R)-3-hydroxycarboxylic acids produced by Streptomyces sp. JM3 and the evaluation of their antimicrobial properties. World J Microbiol Biotechnol 28, 2791–2800 (2012). https://doi.org/10.1007/s11274-012-1089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1089-z

Keywords

Navigation