Skip to main content
Log in

Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study a comparison was made between type 1 and type 2 isopentenyl diphosphate isomerases (IDI) in improving lycopene production in Escherichia coli. The corresponding genes of Bacillus licheniformis and the host (i Bl and i Ec , respectively) were expressed in lycopene producing E. coli strains by pTlyciBl and pTlyciEc plasmids, under the control of tac promoter. The results showed that the overexpression of i Ec improved the lycopene production from 33 ± 1 in E. coli Tlyc to 68 ± 3 mg/gDCW in E. coli TlyciEc. In contrast, the expression of i Bl increased the lycopene production more efficiently up to 80 ± 9 mg/gDCW in E. coli TlyciBl. The introduction of a heterologous mevalonate pathway to elevate the IPP abundance resulted in a lycopene production up to 132 ± 5 mg/gDCW with i Ec in E. coli TlyciEc-mev and 181 ± 9 mg/gDCW with i Bl in E. coli TlyciBl-mev, that is, 4 and 5.6 times respectively. When fructose, mannose, arabinose, and acetate were each used as an auxiliary substrate with glycerol, lycopene production was inhibited by different extents. Among auxiliary substrates tested, only citrate was an improving one for lycopene production in all strains with a maximum of 198 ± 3 mg/gDCW in E. coli TlyciBl-mev. It may be concluded that the type 2 IDI performs better than the type 1 in metabolic engineering attempts for isoprenoid production in E. coli. In addition, the metabolic engineering of citrate pathway seems a promising approach to have more isoprenoid accumulation in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alper H, Jin YS, Moxley JF et al (2005a) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  Google Scholar 

  • Alper H, Miyaoku K, Stephanopoulos G (2005b) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616

    Article  CAS  Google Scholar 

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    Article  CAS  Google Scholar 

  • Cheng Q (2006) Structural diversity and functional novelty of new carotenoid biosynthesis genes. J Ind Microbiol Biotechnol 33:552–559

    Article  CAS  Google Scholar 

  • Das A, Yoon SH, Lee SH et al (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol 77:505–512

    Article  CAS  Google Scholar 

  • Ducrey Sanpietro LM, Kula MR (1998) Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14:1007–1016

    Google Scholar 

  • Dutoit R, Ruyck J, Durisotti V et al (2008) Overexpression, physicochemical characterization, and modeling of a hyperthermophilic Pyrococcus furiosus type 2 IPP isomerase. Proteins 71:1699–1707

    Article  CAS  Google Scholar 

  • Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17:57–61

    Article  CAS  Google Scholar 

  • Garcia-Asua G, Lang HP, Cogdell RJ et al (1998) Carotenoid diversity: a modular role for the phytoene desaturase step. Trends Plant Sci 3:445–449

    Article  Google Scholar 

  • Hahn FM, Baker JA, Poulter CD (1996) Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus Encodes idi, a Gene for isopentenyl diphosphate isomerase. J Bacteriol 178(3):619–624

    CAS  Google Scholar 

  • Hahn FM, Hurlburt AP, Poulter CD (1999) Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181(5):4499–4504

    CAS  Google Scholar 

  • Harada H, Yu F, Okamoto S et al (2009) Efficient synthesis of functional isoprenoids from acetoacetate through metabolic pathway-engineered Escherichia coli. Appl Microbiol Biotechnol 81:915–925

    Article  CAS  Google Scholar 

  • Hwang ES, Bowen PE (2002) Can the consumption of tomatoes or lycopene reduce cancer risk? Integr Cancer Ther 1:121–132

    CAS  Google Scholar 

  • Kajiwara S, Fraser PD, Kondo K et al (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426

    CAS  Google Scholar 

  • Kang MJ, Yoon SH, Lee YM et al (2005) Enhancement of Lycopene production in Escherichia coli by optimization of the lycopene synthetic Pathway. J Microbiol Biotechnol 15:880–886

    CAS  Google Scholar 

  • Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415

    Article  CAS  Google Scholar 

  • Kim SW, Kim JB, Jung WH et al (2006) Overproduction of beta-carotene from metabolically engineered Escherichia coli. Biotechnol Lett 28:897–904

    Article  CAS  Google Scholar 

  • Kim J, Kong MK, Lee SY et al (2010) Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World J Microbiol Biotechnol 26:2231–2239

    Article  CAS  Google Scholar 

  • Krinsky NI (1989) Antioxidant function of carotenoids. Free Radic Biol Med 7:617–635

    Article  CAS  Google Scholar 

  • Kuzuyama T, Seto H (2003) Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20:171–183

    Article  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13172–13177

    Article  CAS  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11

    Article  CAS  Google Scholar 

  • Lee PC, Mijts BN, Schmidt-Dannert C (2004) Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 65:538–546

    CAS  Google Scholar 

  • Rodriguez-Concepción M, Campos N, Lois LM et al (2000) Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Lett 473:328–332

    Article  Google Scholar 

  • Rodríguez-Villalón A, Pérez-Gil J, Rodríguez-Concepción M (2008) Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J Biotechnol 135:78–84

    Article  Google Scholar 

  • Rohdich F, Hecht S, Gartner K et al (2002) Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163

    Article  CAS  Google Scholar 

  • Rohmer M, Knani M, Simonin P et al (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    CAS  Google Scholar 

  • Ruther A, Misawa N, Boger P et al (1997) Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl Microbiol Biotechnol 48:162–167

    Article  CAS  Google Scholar 

  • Sandman G (1991) Biosynthesis of cyclic carotenoid: biochemistry and molecular genetics of the reaction sequence. Physiol Plantarum 83:186–193

    Article  Google Scholar 

  • Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chem biochem 3:629–635

    CAS  Google Scholar 

  • Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathway. Nat Biotechnol 18:750–753

    Article  CAS  Google Scholar 

  • Tao L, Wilczek J, Odom JM et al (2006) Engineering a beta-carotene ketolase for astaxanthin production. Metab Eng 8:523–531

    Article  CAS  Google Scholar 

  • Vadali RV, Fu Y, Bennett GN et al (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21:1558–1561

    Article  CAS  Google Scholar 

  • Wang CW, Oh MK, Liao JC (1999) Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng 62:235–241

    Article  CAS  Google Scholar 

  • Yoon SH, Lee YM, Kim JE et al (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94:1025–1032

    Article  CAS  Google Scholar 

  • Yoon SH, Kim JE, Lee SH et al (2007) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74:131–139

    Article  CAS  Google Scholar 

  • Yoon SH, Lee SH, Das A et al (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotech 44:899–905

    Google Scholar 

  • Yuan LZ, Rouviere PE, Larossa RA et al (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng 8:79–90

    Article  CAS  Google Scholar 

  • Zahiri HS, Yoon SH, Keasling JD et al (2006) Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416

    Article  CAS  Google Scholar 

  • Zahiri HS, Noghabi KA, Samoodi M et al (2009) Effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli strains. Iranian J Biotechnol 7:224–232

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Genetic Engineering and Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shahbani Zahiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rad, S.A., Zahiri, H.S., Noghabi, K.A. et al. Type 2 IDI performs better than type 1 for improving lycopene production in metabolically engineered E. coli strains. World J Microbiol Biotechnol 28, 313–321 (2012). https://doi.org/10.1007/s11274-011-0821-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0821-4

Keywords

Navigation