Skip to main content
Log in

Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil

World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Antagonistic Bacillus strains were isolated from soil and analyzed for the purpose of determining whether they could be used as natural biological agents. Primary in vitro screening for antagonism of the isolates was performed against five phytopathogenic mould fungi. Strains TS 01 and ZR 02 exhibited the most pronounced inhibitory effects. They were identified as Bacillus subtilis on the basis of their morphological, cultural and physiology-biochemical properties as well as their hierarchical cluster analysis conducted by means of computer program SPSS. The antimicrobial activity of the strains from cultural medium and sterile filtrate were determined in vitro against a great number of predominantly phytopathogenic fungi and bacteria. TS 01 and ZR 02 strains exhibited very broad and at the same time degree varying antibiotic spectra of activities against both Gram-positive and Gram-negative microorganisms. Many of them were tested against sensitivity to the antimicrobial action of B. subtilis for the very first time. B. subtilis TS 01 and ZR 02 showed highest antifungal activity (sterile zone in diameter over 37 mm) against Alternaria solani, Botrytis cinerea, Monilia linhartiana 869, Phytophthora cryptogea 759/1 and Rhizoctonia sp. The most sensitive bacterial species were found to be Pseudomonas syringae pv. tomato Ro and Xanthomonas campestris with sterile zones 48.0 and 50.0 mm in diameter, respectively. The latter draws a conclusion that the isolated and identified Bacillus subtilis strains are promising natural biocontrol agents and should be further studied and tested for control of numerous plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Ahamad S, Srivastava M (2000) Biological control of dry root rot of chickpea with plant products and antagonistic microorganisms. Ann Agric Res 21:450–451

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  Google Scholar 

  • Batuner LM (1971) Mathematical methods in chemical technique. Himiya, Leningrad (in Russian)

    Google Scholar 

  • Beshkov MN, Karova EA, Murgov I (1986) Manual for exercises of microbiology. Zemizdat, Sofia (in Bulgarian)

    Google Scholar 

  • Besson F, Michel G (1990) Mycosubtilins B and C: minor antibiotics from mycosubtilin poducer Bacillus subtilis. Microbios 62:93–99

    CAS  Google Scholar 

  • Chan YK, McCormick WA, Seifert KA (2003) Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can J Microbiol 49:253–262. doi:10.1139/w03-033

    Article  CAS  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80(1):115–123. doi:10.1007/s00253-008-1520-4

    Article  CAS  Google Scholar 

  • Deacon JW, Berry LA (1993) Biocontrol of soil-borne plant pathogens: concepts and their application. Pestic Sci 37:417–426. doi:10.1002/ps.2780370417

    Article  Google Scholar 

  • Dimitrov DI, Gigova ND (1978) Manual for practical excercises of industrial medical microbiology. Nauka i izkustvo, Sofia (in Bulgarian)

    Google Scholar 

  • Dolej S, Bochow H (1996) Studies of the mode of action of Bacillus subtilis culture filtrates in the model pathosystem tomato seedling–Fusarium oxysporum f. sp. Radicis- lycopersici. Meded Fac Landbouww Rijksuniv Gent 61:483–489

    Google Scholar 

  • Ferreira J, Matthee F, Thomas A (1991) Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283–287

    Article  Google Scholar 

  • Fiddaman PJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126

    CAS  Google Scholar 

  • Főldes T, Banhegyi I, Herpai Z, Varga L, Szigeti J (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. J Appl Microbiol 89:840–846. doi:10.1046/j.1365-2672.2000.01184.x

    Article  Google Scholar 

  • Grosch R, Junge H, Krebs B, Bochow H (1999) Use of Bacillus subtilis as a biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. J Pl Dis Prot 106:568–580

    Google Scholar 

  • Gushterov G, Andonov P, Ts Todorov, Kominkov L, Gincheva-Starcheva M (1977) Manual of microbiology and virology, 2nd edn. Nauka i izkustvo, Sofia (in Bulgarian)

    Google Scholar 

  • Helbig J, Bochow H (2001) Effectiveness of Bacillus subtilis (isolate 25021) in controlling Botrytis cinerea in strawberry. J Pl Dis Prot 108:545–559

    Google Scholar 

  • Klich MA, Lax AR, Bland JM (1991) Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 116:77–80. doi:10.1007/BF00436368

    Article  CAS  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49(3):277–285. doi:10.1016/j.biocontrol.2009.02.007

    Article  Google Scholar 

  • McKeen C, Reily C, Pusey P (1986) Production and partial characterization of antifungal substances antagonistic to Monilia fructicola from Bacillus subtilis. Phytopathology 76:136–139. doi:10.1094/Phyto-76-136

    Article  CAS  Google Scholar 

  • Mihaylova P, Straka PF, Apostolov I (1982) Plant-protection forecast and signalization. Zemizdat, Sofia, pp 199–222 (in Bulgarian)

  • Montesinos E (2007) Antimicrobial peptide and plant disease control. FEMS Microbiol Lett 270(1):1–11. doi:10.1111/j.1574-6968.2007.00683.x

    Article  CAS  Google Scholar 

  • Nunes C, Usall J, Teixido N, Vinas I (2001) Biological control of postharvest pear diseases using a bacterium Pantoea agglomerans CPA-2. Int J Food Microbiol 70:53–61. doi:10.1016/S0168-1605(01)00523-2

    Article  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1993) Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solid state fermentation. J Ferment Bioeng 75:23–27. doi:10.1016/0922-338x(93)90172-5

    Article  CAS  Google Scholar 

  • Phae C, Shoda M, Kubota N (1990) Suppressive effect of Bacillus subtilis and it’s products on phytopathogenic microorganisms. Journal of Ferment Bioeng 69:1–7. doi:10.1016/0922-338x(90)90155-P

    Article  CAS  Google Scholar 

  • Phae C, Shoda M, Kita N, Nakano M, Ushiyama K (1992) Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22. Ann Phytopath Soc Jpn 58:329–339

    Google Scholar 

  • Romero H, Viscaya L, Ferrara G (2006) Bacillus subtilis inhibits growth of Cladophialophora carrionii in vitro. J Mycol Med 16:92–94. doi:10.1016/j.mycmed.2006.01.007

    Google Scholar 

  • Sandrin C, Peypoux F, Michel G (1990) Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol Appl Biochem 12:370–375

    CAS  Google Scholar 

  • Smirnov VV, Reznik SR, Vasilevskaya IA (1982) Spore-forming aerobic bacteria—producers of biologically active substances. Naukova dumka, Kiev (in Russian)

    Google Scholar 

  • Sneath PHA (1986) Endospore-forming Gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1104–1207

    Google Scholar 

  • Tabbene O, Ben SI, Bouabdallah F, Mangoni ML, Urdaci MC, Limam F (2009) Production of anti-methicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl Biochem Biotechnol 157(3):407–419. doi:10.1007/s12010-008-8277-1

    Article  CAS  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160. doi:10.1111/j.1365-2672.2004.02252.x

    Article  Google Scholar 

  • Yang D, Bo Wang, Wang J, Yu Chen, Zhou M (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control 51(1):61–65. doi:10.1016/j.biocontrol.2009.05.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevdalina Todorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorova, S., Kozhuharova, L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microbiol Biotechnol 26, 1207–1216 (2010). https://doi.org/10.1007/s11274-009-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0290-1

Keywords

Navigation