Skip to main content
Log in

Production and characterization of extracellular protease of mutant Aspergillus niger AB100 grown on fish scale

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fish scale, the chief waste material of fish processing industries was processed and tested for production of extracellular protease by mutant Aspergillus niger AB100. Protease production by A. niger AB100 was greatly enhanced in presence of processed fish scale powder. Where as among the three complex nutrients tested, soya bean meal shows maximum stimulatory effect over protease production (2,776 μmol/ml/min) when used in combination with glucose (5% w/v) and urea (2.5% w/v). The protease was optimally active at pH 7.0, retaining more than 60% of its activity in the pH range of 5–9. The enzyme was found to be most active at 50°C and stable at 30°C for 1 h. Purification of enzyme by CM-Cellulose and SDS-PAGE resulted in about 26-fold increase in the specific activity of the enzyme with a molecular weight of 30.9 kDa. HPLC study shows the purity of the enzyme as 75.92%. By the activating effect of divalent cations (Fe2+, Zn2+, Mn2+, Ca2+and Mg2+) and inhibiting effect of chelating agent (EDTA) and Hg2+, the enzyme was found to be a metalloprotease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alagarsamy S, Chandran S, George S, Carlos RS, Ashok P (2005) Production and partial purification of a neutral metalloprotease by fungal mixed substrate fermentation. Food Technol Biotechnol 43:313–319

    Google Scholar 

  • American Academy of Pediatrics Committee on Nutrition (1989) Pediatrics 83:1068–1069

    Google Scholar 

  • Anwar A, Saleemuddin M (1998) Alkaline proteases. A review. Bioresour Technol 6:175–183

    Article  Google Scholar 

  • Barnali B, Banik AK (2005) Production of protein rich organic fertilizer from fish scale by mutant Aspergillus niger AB100—a media optimization study. J Sci Ind Res 64:293–298

    Google Scholar 

  • Barnali B, Banik AK, Manas D (2004) Development of a mutant Aspergillus niger AB100 to obtain biofertilizer from fish scale and measurement of proteolytic activity. In: Das S, Swamy YV, Rao KK, Misra VN (eds) NSPUIE’04: Proceedings of national seminer on pollution in urban industrial environment, 2–3 December, 04, Bhubaneswar, India. Allied Publishers Private Limited, p 171

  • Barnali B, Manas D, Banik AK (2005) Biodegradation of fish scale by Aspergillus niger: an enzymatic and scanning electron microscopic study. J Food Sci Technol 42:387–391

    Google Scholar 

  • Berla ET, Suseela GR (2000) Studies on the production of extracellular protease by Alcaligenes faecalis. World J Microbiol Biotechnol 16:663–666

    Article  Google Scholar 

  • Bernal C, Vidal L, Valdivieso E, Coello N (2003) Keratinolytic activity of Kocuria rosea. World J Microbiol Biotechnol 19:225–261

    Article  Google Scholar 

  • Bilgrami KS, Verma RN (1981) Physiology of fungi. Vikash Publishing House Pvt. Ltd., New Delhi, pp 47–65

    Google Scholar 

  • Blair L, Lennete R, Truant M (1970) Mannual of clinical microbiology. Am Soc Microbiol 648–652

  • Boer CG, Peralta RM (2000) Production of extracellular protease by Aspergillus tamarii. J Basic Microbiol 40:75–81

    Article  CAS  Google Scholar 

  • Clausen E, Gildberg A, Raa J (1985) Preparation and testing of an autolysate of fish viscera as growth substrate for bacteria. Appl Environ Microbiol 50:1556–1557

    CAS  Google Scholar 

  • Coello N, Brito L, Nonus M (2000) Biosynthesis of L-lysine by Cornybacterium glutamicum grown on of fish silage. Bioresour Technol 73:221–225

    Article  CAS  Google Scholar 

  • Dalev PG (1994) Utilisation of waste feather from poultry slaughter for production of a protein concentrate. Bioresour Technol 48:265–267

    Article  CAS  Google Scholar 

  • Dufosse L, De la Broise D, Guerard F (1997) Review: fish protein hydrolysates as nitrogen sources for microbial growth and metabolite production. In: Recent research developments in microbiology vol 1, Research Sign Post Publ., Trivandum, India, pp 365–381

  • Ellouz Y, Bayoudh A, Kammour S, Ghasallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on sardinella heads and viscera flor. Bioresour Technol 80:49–51

    Article  CAS  Google Scholar 

  • Fogarty WM, Griffin PJ, Joyce AM (1974) Enzymes of Bacillus species-Part 2. Process Biochem 9:27–29, 31, 33, 35

    CAS  Google Scholar 

  • Freeman SA, Peek K, Daniel R (1993) Characterization of a chelator resistant proteinase from Thermus resistant strain Rt4A2. Biochem J 295:463–469

    CAS  Google Scholar 

  • Frij H, Ögel ZB (2002) Production of neutral and alkaline extracellular protease by the thermophilic fungus, Scytalidium thermophillum, grown on microcrystalline cellulose. Biotechnol Lett 24:1107–1110

    Article  Google Scholar 

  • Genckal H, Tari C (2006) Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Technol 39:703–710

    Google Scholar 

  • George S, Raju V, Krisnan MRV, Subramanian TV, Jayaraman K (1995) Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochem 30:457–462

    Article  CAS  Google Scholar 

  • Gildberg A, Batists I, Ström E (1989) Preparation and characterization of peptones obtained by two- step enzymatic hydrolysis of whole fish. Biotechnol Appl Biochem 11:413–423

    CAS  Google Scholar 

  • Goustevora A, Braikova D, Christov P, Tishinov K, Vasileva-Tonkova E, Haertle T, Nedkov P (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340

    Article  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  CAS  Google Scholar 

  • Heu MS, Kim HR, Cho DM, Godber JS, Preun JH (1997) Purification and characterization of cathepsin L-like enzyme from the muscle of Anchovy, Engrrraulis japonica. Comp Biochem Physiol 118B:523–529

    CAS  Google Scholar 

  • Ishikawa H, Ishimi K, Sugiur M, Sowa A, Fujiwara N (1993) Kinetics and mechanism of enzymatic hydrolysis of gelatin layers of X-ray film and release of silver particles. J Ferment Bioeng 76:300–305

    Article  CAS  Google Scholar 

  • Jitendra S, Avtar S, Rejesh K, Ashwani M (2006) Partial purification of an alkaline protease from a new strain of Aspergillus oryzae AWT 20 and its enhanced stabilization in entrapped Ca-alginate beads. Internet J Microbiol 2(2)

  • Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36:1–65

    CAS  Google Scholar 

  • Kida K, Morimura S, Noda J, Nishida Y, Imai T, Otagiri M (1995) Enzymatic hydrolysis of the horn and hoof of cow and buffalo. J Ferment Bioeng 80:478–484

    Article  CAS  Google Scholar 

  • Kumar CG, Hiroshi T (1999) Microbial alkaline protease ▸ From a bioindustrial view point. Biotechnol Adv 17:561–594

    Article  CAS  Google Scholar 

  • Kumar CG, Tiwari MP, Jany KD (1999) Novel alkaline serine proteases from alkalophilic Bacillus spp. Purification and some properties. Process Biochem 34:441–449

    Article  CAS  Google Scholar 

  • Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D, Bouchara JP (1996) A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 315:119–126

    CAS  Google Scholar 

  • Leikus JG, Vieille C, Savchenko A (1998) Thermozymes: biotechnology and structure function relationship. Extremophiles 1:2–13

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Meyers SP, Ahearu DG (1977) Extracellular proteolysis by Candida lipolytica. Mycologia 69:644–651

    Article  Google Scholar 

  • Mohsen FN, Dileep D, Deepti D (2005) Potential application of protease isolated from Pseudomonas auriginosa PD100. Biotechnol Ind 8:197–203

    Google Scholar 

  • Mukhopadhya AK, Banik AK (1991) Kinetics studies on waste leather degrading protease enzyme. Res Ind 36:108–110

    Google Scholar 

  • Nunes AS, Martins MLL (2001) Isolation, properties and kinetics of growth of a thermophilic Bacillus. Braz J Microbiol 32:271–275

    Google Scholar 

  • Ogundero VW, Osunlaja SO (1986) The purification and activities of an alkaline protease of Aspergillis clavatus from Nigerian poultry feeds. J Basic Microbiol 26:241–248

    Article  CAS  Google Scholar 

  • Om VS, Ben MJP, Singh RP (1999) Isolation and characterization of a potent fungal strain Aspergillus niger ORS-4 for gluconic acid production. J Sci Ind Res 58:594–600

    Google Scholar 

  • Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27:109–117

    Article  CAS  Google Scholar 

  • Pastor MD, Lorda GS, Balatti A (2001) Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates. Braz J Microbiol 32:1–8

    Article  Google Scholar 

  • Reissbrodt R, Beer W, Muller R, Claus H (1995) Characterization of casein peptones by HPLC profiles and microbiological growth parameters. Acta Biotechnologia 15:223–231

    Article  CAS  Google Scholar 

  • Reed HB, West TP (1994) Effect of complex nitrogen sources on pullulan production relative to carbon source. Microbios 80:83–90

    Google Scholar 

  • Sandeep K, Vohra RM, Mukesh K, Quasim B, Hoondal GS (2001) Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp. P-2. World J Microbiol Biotechnol 17:125–129

    Article  Google Scholar 

  • Shrivastava JN, Ghawana VK, Kumar A (1996) Biodegradation of wool by Trichophyton simii and Aspergillus niger. Mycoses 39:483–487

    Article  CAS  Google Scholar 

  • Singh A, Abidi AB, Agarwal AK, Darmawal NS (1989) Evaluation of alkali treatment for biodegradation of corn cobs by Aspergillus niger. Folia Microbiologica Praha 34:479–484

    Article  CAS  Google Scholar 

  • Singh J, Batra N, Sobti CR (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochem 36:781–785

    Article  CAS  Google Scholar 

  • Takagi H, Kondou M, Hisatsuka T, Nakamuri S, Tsai YC, Yamasaki M (1992) Effect of an alkaline elastase from an alkalophilic Bacillus strain on the tenderisation of beef meat. J Agric Food Chem 40:2364–2368

    Article  CAS  Google Scholar 

  • Tremacoldi CR, Monti R, Selistre-De-Araújo HS, Carmona EC (2006) Purification and properties of an alkaline protease of Aspergillus clavatus. World J Microbiol Biotechnol 23:295–299

    Google Scholar 

  • Wellingta CAD, Meire LLM (2004) Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz J Microbiol 35:91–96

    Google Scholar 

  • Wilson SA, Young OA, Coolbear T, Daniel RM (1992) The use of proteases from extreme thermophiles for meat tenderisation. Meat Sci 32:93–103

    Article  CAS  Google Scholar 

  • Yosra TE, Basma G, Nabil S, Sadak K, Moncef N (2003) Biosynthesis of protease by Pseudomonas auriginosa MN7 grown on fish substrate. World J Microbiol Biotechnol 19:41–45

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Food Processing and Horticulture, Government of West Bengal and Department of Chemical Engineering, University of Calcutta for providing funds and laboratory facilities, respectively, for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnali Ray Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, B.R., Banik, A.K. & Das, M. Production and characterization of extracellular protease of mutant Aspergillus niger AB100 grown on fish scale. World J Microbiol Biotechnol 24, 449–455 (2008). https://doi.org/10.1007/s11274-007-9492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9492-6

Keywords

Navigation