Skip to main content
Log in

Kinetic study of phenol hydroxylase and catechol 1,2-dioxygenase biosynthesis by Candida tropicalis cells grown on different phenolic substrates

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

When Candida tropicalis was grown on phenol, catechol or resorcinol, the highest levels of specific activity of phenol hydroxylase (EC. 1.14.13.7) and catechol 1,2-dioxygenase (EC. 1.13.11.1) were attained with phenol. With the three aromatic compounds tested, the yeast cells exhibited sharp peaks of specific activity of both enzymes at particular incubation times. Phenol-induced cells containing high levels of both enzymes were capable of degrading rapidly and without delay 4-chlorophenol and 2,6-dichlorophenol, and to a lesser extend pentachlorophenol. However, the yeast could not grow on chlorophenols as major carbon and energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alleman, B.C., Logan, B.E. & Gilbertson, R.L.1995Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Research 29, 61–67.

    Google Scholar 

  • Apajalahti, J.H.A. & Salkinoja-Salonen, M.S.1986Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Applied Microbiology and Biotechnology 25, 62–67.

    Google Scholar 

  • Arai, H., Akahira, S., Ohishi, T., Maeda, M. & Kudo, T. 1998 Adaptation of Comamonas testosterone TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144, 2895–2903

    Google Scholar 

  • Arai, H., Ohishi, T., Chang, M.Y. & Kudo, T.2000Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. Microbiology 146, 1707–1715

    Google Scholar 

  • Arenghi, F.L.G., Berlanda, D., Galli, E., Sello, G. & Barbieri, P. 2001 Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Applied and Environmental Microbiology 67,3304–3308

    Google Scholar 

  • Armenante, F. & Kafkewitz, D.1995Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Letters in Applied Microbiology 21, 307–312.

    Google Scholar 

  • Bollag, J.M., Chu, H.L., Rao, M.A. & Gianfreda, L.2003Enzymatic oxidative transformation of chlorophenol mixtures. Journal of Environmental Quality 32, 63–69.

    Google Scholar 

  • Briglia, M., Rainey, F.A., Stackebrandt, E., Schraa, G. & Salkinoja-Salonen, M.S. 1996 Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. International Journal of Systematic Bacteriology 46, 23–30.

    Google Scholar 

  • Caldeira, M., Heald, S.C., Carvalho, M.F., Vasconcelos, I., Bull, A.T. & Castro, P.M.L.19994-Chlorophenol degradation by a bacterial consortium: development of a granular activated carbon biofilm reactor. Applied Microbiology and Biotechnology 52, 722–729.

    Google Scholar 

  • Chang, S.Y., Li, C.T., Hiang, S.Y. & Chang, M.C.1995Intraspecific protoplast fusion of Candida tropicalis for enhancing phenol degradation. Applied Microbiology and Biotechnology 43, 534–538.

    Google Scholar 

  • Chang, Y.H., Li, C.T., Chang, M.C. & Shieh, W.K.1998Batch phenol degradation by Candida tropicalis and its fusant. Biotechnology and Bioengineering 60, 391–395.

    Google Scholar 

  • Díaz, E., Ferra´ndez, A., Prieto, M.A. & García, J.L.2001Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 65, 523–569.

    Google Scholar 

  • Greenberg, A.E., Clesceri, L.S. & Eaton, A.D.1992In Standard Methods for the Examination of Water and Wastewater. p. 5.33. Washington, D.C.: American Public Health Association Publication Office. ISBN 0–87553-207-1.

    Google Scholar 

  • Gurujeyalaskshmi G. & OrielP. 1989 Isolation of phenol-degradingBacillus stearothermo philus and partial characterization of the phenol hydroxylase. Applied and Environmental Microbiology 55, 500–502

    Google Scholar 

  • Harwood, C.S. & Parales, R.E.1996The β-ketoadipate pathway and the biology of self-identity. Annual Review of Microbiology 50, 553–590.

    Google Scholar 

  • Hill, G.A., Milne, B.J. & Nawrocki, P.A.1996Cometabolic degradation of 4-chlorophenol by Alcaligenes eutrophus. Applied Microbiology and Biotechnology 46, 163–168.

    Google Scholar 

  • Hollender, J., Dott, W. & Hopp, J.1994Regulation of chloro-and methylphenol degradation in Comamonas testosterone JH5. Applied and Environmental Microbiology 60, 2330–2338

    Google Scholar 

  • Ivoilov, V.S. & Karasevich, I.N.1983Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts. Mikrobiologiya 52, 956–961.

    Google Scholar 

  • Juárez-Ramírez, C., Ruiz-Ordaz, N., Cristiani-Urbina, E. & Galíndez-Mayer, J.2001Degradation kinetics of phenol by immobilized cells of Candida tropicalis in a fluidized bed reactor. World Journal of Microbiology and Biotechnology 17, 697–705.

    Google Scholar 

  • Katayama-Hirayama, K., Tobita, S. & Hirayama, K.1994Biodegradation of phenol and monochlorophenols by yeast Rhodotorula glutinis. Water Science and Technology 30, 59–66.

    Google Scholar 

  • Kiyohara, H., Hatta, T., Ogawa, Y., Kakuda, T., Yokoyama, H. & Takizawa, N.1992Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Applied and Environmental Microbiology 58, 1276–1283

    Google Scholar 

  • Krug, M., Ziegler, H. & Straube, G.1985Degradation of phenolic compounds by the yeast Candida tropicalis HP15. I. Physiology of growth and substrate utilization. Journal of Basic Microbiology 25, 103–110.

    Google Scholar 

  • Krug, M. & Straube, G.1986Degradation of phenolic compounds by the yeast Candida tropicalis HP15. II. Some properties of the first two enzymes of the degradation pathway. Journal of Basic Microbiology 26, 271–281.

    Google Scholar 

  • Kurtz, A.M. & Crow, S.A.1997Transformation of chlororesorcinol by the hydrocarbonoclastic yeasts Candida maltosa, Candida tropicalis, and Trichosporon oivide. Current Microbiology 35, 165–168.

    Google Scholar 

  • Lee, C.M., Lu, C.J. & Chuang, M.S.1994Effects of immobilized cells on the biodegradation of chlorinated phenols. Water Science and Technology 30, 87–90.

    Google Scholar 

  • Lovell, C.R., Eriksen, N.T., Lewitus, A.J. & Chen, Y.P. 2002 Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Marine Ecology Progress Series 229, 11–18.

    Google Scholar 

  • Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W. & Janssen, D.B.1999Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Journal of Bacteriology 181, 1309–1318

    Google Scholar 

  • Mayer, R.J. & Que, L.198418O studies of pyrogallol cleavage by catechol 1,2-dioxygenase. Journal of Biological Chemistry 259, 13056–13060

    Google Scholar 

  • Moiseeva, O.V., Lińko, E.V., Baskunov, B.P. & Golovleva, L.A. 1999 Degradation of 2-chlorophenol and 3-chlorobenzoate by Rhodococcus opacus. Mikrobiologiya 68, 400–405.

    Google Scholar 

  • Neujahr, H.Y. & Gaal, A.1973Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporon Cutaneum. European Journal of Biochemistry 35, 386–400.

    Google Scholar 

  • Neujahr, H.Y. & Kjellén, K.G.1978Phenol hydroxylase from yeast. Reaction with phenol derivatives. Journal of Biological Chemistry 253, 8835–8841

    Google Scholar 

  • Neujahr, H.Y. & Varga, J.M.1970Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum. European Journal of Biochemistry 13, 37–44.

    Google Scholar 

  • Olsen, R.H., Kukor, J.J., Byrne, A.M. & Johnson, G.R.1997Evidence for the evolution of a single component phenol/cresol hydroxylase from a multicomponent toluene monooxygenase. Journal of Industrial Microbiology and Biotechnology 19, 360–368.

    Google Scholar 

  • Peelen, S., Rietjens, I.M., Boersma, M.G. & Vervoort, J. 1995 Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum. A comparison of regioselectivity and rate of conversion with calculated molecular orbital substrate characteristics. European Journal of Biochemistry 227, 284–291.

    Google Scholar 

  • Polnisch, E., Kneifel, H., Franzke, H. & Hofmann, K.H. 1991 Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2, 193–199.

    Google Scholar 

  • Potrawfke, T., Armengaud, J. & Wittich, R.M.2001Chlorocatechols substituted at positions 4 and 5 are substrates of the broadspectrum chlorocatechol 1,2-dioxygenase from Pseudomonas chloraphis RW71. Journal of Bacteriology 183, 997–1011

    Google Scholar 

  • Reineke, W.1998Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annual Review of Microbiology 52, 287–331.

    Google Scholar 

  • Ridder, L., Briganti, F., Boersma, M.G., Boeren, S., Vis, E.H., Scozzafava, A., Veeger, C. & Rietjens, M.1998Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol 1,2-dioxygenase from Pseudomonas putida (arvilla) C1. European Journal of Biochemistry 257, 92–100.

    Google Scholar 

  • Ruiz-Ordaz, N., Hernández-Manzano, E., Ruiz-Lagunez, J.C., Cristiani-Urbina, E. & Galíndez-Mayer, J.1998Growth kinetic model that describes the inhibitory and lytic effects of phenol on Candida tropicalis yeast. Biotechnology Progress 14, 966–969.

    Google Scholar 

  • Ruiz-Ordaz, N., Juárez-Ramírez, C., Castañón-González, H., Lara-Rodríguez, A., Cristiani-Urbina, E. & Galíndez-Mayer, J. 2000 Aerobic bioprocess and bioreactors used for phenol degradation by free and immobilized yeast cells. Recent Research Developments in Biotechnology and Bioengineering 3, 83–94.

    Google Scholar 

  • Ruiz-Ordaz, N., Ruiz-Lagunez, J.C., Castañón-González, J.H., Hernández-Manzano, E., Cristiani-Urbina, E. & Galíndez-Mayer, J.2001 Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multi-stage bubble column. Revista Latinoamericana de Microbiología 43, 19–25.

    Google Scholar 

  • Schirmer, F., Ehrt, S. & Hillen, W.1997Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250Journal of Bacteriology 179, 1329–1336

    Google Scholar 

  • Semple, K.T. & Cain, R.B.1997Degradation of phenol and its methylated homologues by Ochromonas danica. FEMS Microbiology Letters 152, 133–139.

    Google Scholar 

  • Semple, K.T., Cain, R.B. & Schmidt, S.1999Biodegradation of aromatic compounds by microalgae. FEMS Microbiology Letters 170, 291–300.

    Google Scholar 

  • Shivarova, N., Zlateva, P., Atanasov, B., Christov, A., Peneva, N., Guerginova, M. & Alexieva, Z.1999 Phenol utilization by filamentous yeast Trichosporon cutaneum. Bioprocess Engineering 20, 325–328.

    Google Scholar 

  • Steinle, P., Stucki, G., Stettler, R. & Hanselmann, K.W.1998Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Applied and Environmental Microbiology 64, 2566–2571

    Google Scholar 

  • Westerberg, K., Elvang, A.M., Stackebrandt, E. & Jansson, J.K. 2000 Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. International Journal of Systematic and Evolutionary Microbiology 50, 2083–2092

    Google Scholar 

  • Xun, L., Topp, E. & Orser, C.S.1992Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. Journal of Bacteriology 174, 2898–2902

    Google Scholar 

  • Yadav, J.S. & Reddy, C.A.1993Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Applied and Environmental Microbiology 59, 2904–2908

    Google Scholar 

  • Yap, L.F., Lee, Y.K. & Poh, C.L.1999Mechanism for phenol tolerance in phenol-degrading Comamonas testosterone strain. Applied Microbiology and Biotechnology 51, 833–840.

    Google Scholar 

  • Zouari, H., Labat, M. & Sayadi, S.2002Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures. Bioresource Technology 84, 145–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuatzi-chacón, D., Ordorica-morales, G., Ruiz-ordaz, N. et al. Kinetic study of phenol hydroxylase and catechol 1,2-dioxygenase biosynthesis by Candida tropicalis cells grown on different phenolic substrates. World Journal of Microbiology and Biotechnology 20, 695–702 (2004). https://doi.org/10.1007/s11274-004-2622-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-004-2622-5

Navigation