Skip to main content
Log in

The importance of wetlands in the energy balance of an agricultural landscape

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Energy fluxes, including net radiation, latent heat flux and sensible heat flux were determined on clear days during the vegetative period in four types of land cover: wet meadow, pasture, arable field, and an artificial concrete surface. The average net radiation ranged between 123 W m−2 at the concrete surface and 164 W m−2 at the wet meadow. The mean maximum daytime latent heat ranged between 500 and 600 W m−2, which corresponds to an evapotranspiration rate of about 0.2 g m−2 s−1 under the prevailing conditions of the wet meadow. The results demonstrated that the wet meadow dissipated about 30 % more energy through evapotranspiration than the field or the pasture, and up to 70 % more energy than the concrete surface. The evaporative fraction indicated that more than 100 % of the energy released by the wet meadow was dissipated through evapotranspiration; this was attributed to local heat advection. Wetland evapotranspiration thus contributes significantly to the cooling of agricultural landscapes; the energy released can reach several 100 MW km−2. Wetland evapotranspiration has a double ‘air conditioning’ effect through which it equalises temperature differences: (1) surplus solar energy is bound into water vapour as latent heat; (2) The vapour moves towards cooler portions of the atmosphere where the energy is released. The air-conditioning effect of wetlands plays an important role in mitigating local climate extremes; this ecosystem service tends to be disregarded in relation to other better-known wetland functions such as nutrient retention and provision of high biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acreman MC, Harding RJ, Lloyd CR, McNeil DD (2003) Evaporation characteristics of wetlands: experience from a wet grassland and a reedbed using eddy correlation measurements. Hydrol Earth Syst Sci 7(1):11–21

    Article  Google Scholar 

  • Allen RL, Pereira DR, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations (FAO) Irrigation and Drainage Paper No. 56. Rome, FAO

  • Andreassian V (2004) Water and forests: from historical controversy to scientific debate. J Hydrol 291:1–27

    Article  Google Scholar 

  • Asrar G, Kanemasu ET (1983) Estimating thermal diffusivity near the soil surface using Laplace transform: uniform initial conditions. Soil Sci Soc Am J 47:397–401

    Article  Google Scholar 

  • Beljaars CCM, Holstag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  • Blad BL, Rosenberg NJ (1976) Evaluation of resistance and mass transport evapotranspiration models requiring canopy temperature data. Agron J 68:764–769

    Article  Google Scholar 

  • Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X (1997) The energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J Geophys Res 102:28915–28927. doi:10.1029/97JD00193

    Article  Google Scholar 

  • Blanken PD, Williams MW, Burns SP, Monson RK, Knowles J, Chowanski K, Ackerman T (2009) A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry 95:61–76. doi:10.1007/s10533-009-9325-9

    Article  Google Scholar 

  • Bowen IS (1926) The ratio of heat losses by conduction and evaporation from any surface. Phys Rev 27:779–789

    Article  CAS  Google Scholar 

  • Brakke TW, Verma SB, Rosenberg NJ (1978) Local and regional components of sensible heat advection. J Appl Meteorol 17:955–963. doi:10.1175/1520-0450-017

    Article  Google Scholar 

  • Bray J, Sanger J, Archer A (1966) The visible albedo of surfaces in central Minnesota. Ecology 47(4):524–531

    Article  Google Scholar 

  • Brom J, Pokorný J (2009) Temperature and humidity characteristics of two willow stands, a peaty meadow and a drained pasture and their impact on landscape functioning. Boreal Environ Res 14:389–403

    Google Scholar 

  • Brunsell NA, Schymanski SJ, Kleidon A (2011) Quantifying the thermodynamic entropy budget of the land surface: is this useful? Earth Syst Dyn 2:87–103. doi:10.5194/esd-2-87-2011

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and application. D. Reidel Publishing Co., Dordrecht

    Book  Google Scholar 

  • Buck Research Manual (1996) Updated equation from Buck AL. 1981. New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20:1527–1532. doi:10.1175/1520-0450(1981)-020

    Article  Google Scholar 

  • Burba GG, Verma SB (2005) Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agr Forest Meteorol 135:190–201. doi:10.1016/j.agrformet.2005.11.017

    Article  Google Scholar 

  • Burba GG, Verma SB, Kim J (1999) Surface energy fluxes of Phragmites australis in a prairie wetland. Agr Forest Meteorol 94:31–51

    Article  Google Scholar 

  • Capra F (1996) The web of life: a new synthesis of mind and matter. Harper, New York

    Google Scholar 

  • Coutts AM, Beringer J, Tapper NJ (2007) Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteorol Clim 46:477–493. doi:10.1175/JAM2462.1

    Article  Google Scholar 

  • Craft CB (1996) Dynamics of nitrogen and phosphorus retention during wetland ecosystem succession. Wetl Ecol Manag 4(3):177–187

    Article  Google Scholar 

  • Dahl TE (2011) Status and trends of wetlands in the conterminous United States 2004 to 2009. U.S. Department of the Interior, U.S. Fish and Wildlife Service, Washington, DC

  • De Vries DA (1963) Thermal properties of soil. In: van Wijk WR (ed) Phys Plant Environ. North-Holland, Amsterdam

    Google Scholar 

  • De Vries DA, Philip JR (1986) Soil heat flux, thermal conductivity and the null-alignment method. Soil Sci Soc Am J 50:12–18

    Article  Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or survive. Allan Lane, London

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. Irrigation and drainage paper No. 24, revised. FAO, Rome

  • Eiseltová M, Pokorný J, Hesslerová P, Ripl W (2012) Evapotranspiration—a driving force in landscape sustainability. In: Irmak A (ed) Evapotranspiration—Remote sensing and modeling, InTech, Croatia, p 305–328. doi: 10.5772/725

  • Eulenstein F, Leśny J, Chojnicki BH, Kedziora A, Olejnik J (2005) Analysis of the interrelation between the heat balance structure, type of plant cover and weather conditions. Int Agrophys 19:125–130

    Google Scholar 

  • Fisher J, Acreman MC (2004) Wetland nutrient removal: a review of the evidence. Hydrol Earth Syst Sci 8:673–685

    Article  CAS  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, New York

    Book  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Harvard University Press, Cambridge

    Google Scholar 

  • Gentine P, Entekhabi D, Chehbouni A, Boulet G, Duchemin B (2007) Analysis of evaporative fraction diurnal behaviour. Agr Forest Meteorol 143:13–29

    Article  Google Scholar 

  • Gregory SV, Swanson FJ, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551. doi:10.2307/1311607

    Article  Google Scholar 

  • Gu S, Tang YH, Cui XY, Kato T, Du MY, Li YN, Zhao XQ (2005) Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau. Agr Forest Meteorol 129:175–185. doi:10.1016/j.agrformet.2004.12.002

    Article  Google Scholar 

  • Guo Y, Schuepp PH (1994) An analysis of the effect of local heat advection on evaporation over wet and dry surface strips. J Clim 7:641–652. doi:10.1175/1520-0442-007

    Article  Google Scholar 

  • Hesslerová P, Pokorný J, Brom J, Rejšková-Proházková A (2013) Daily dynamics of radiation surface temperature of different land cover types in a temperature cultural landscape: consequences for the local climate. Ecol Eng 54:145–154

    Article  Google Scholar 

  • Huryna H, Pokorný J (2010) Comparison of reflected solar radiation, air temperature and relative air humidity in different ecosystems: from fishponds and wet meadows to concrete surface. In: Vymazal J (ed) Water and nutrient management in natural and constructed wetlands. Springer Netherlands, Dordrecht, pp 308–326

    Google Scholar 

  • Hussain SA, Badola R (2008) Valuing mangrove ecosystem services: linking nutrient retention function of mangrove forests to enhanced agroecosystem production. Wetl Ecol Manag 16(6):441–450

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate changes—synthesis report. In: Pachauri RK, Reisinger A (eds), http://www.ipcc.ch. Accessed 16 February 2010

  • Jackson RD, Idso SB, Reginato RJ (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17:1133–1138

    Article  Google Scholar 

  • Jakobs JM, Mergelsberg SL, Lopera AF, Myers DA (2002) Evapotranspiration from a wet prairie wetland under drought conditions: paynes prairie preserve, Florida, USA. Wetlands 22(2):374–385

    Article  Google Scholar 

  • Jarvis PG, McNaughton KG (1985) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–4

    Article  Google Scholar 

  • Johnston CA (2013) By the (disappearing?) shores of silver lake. Natl Wetl Newsl 35(1):6

    Google Scholar 

  • Jones HG (1992) Plants and microclimate, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kalma JG (1989) A comparison of expressions for the aerodynamic resistance to sensible heat transfer. CSIRO Div water resourc technical memo 89(6):11

    Google Scholar 

  • Kao J, Titus J, Zhu W (2003) Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands 23–24:979–987. doi:10.1672/0277-5212(2003)-023

    Article  Google Scholar 

  • Kedziora A (2004) How to manage water cycles in watershed. In: Integrated watershed management – ecohydrology & phytotechology—Manual. UNESCO, Italy

  • Kimball BA, Jackson RD, Reginato RJ, Nakayama FS, Idso SB (1976a) Comparison of field-measured and calculated soil–heat fluxes. Soil Sci Soc Am J 40:18–25

    Article  Google Scholar 

  • Kimball BA, Jackson RD, Nakayama FS, Idso SB, Reginato RJ (1976b) Soil-heat flux determination: temperature gradient method with computed thermal conductivities. Soil Sci Soc Am J 40:25–28

    Article  Google Scholar 

  • Kopp G, Lawrence G, Rottman G (2005) The total irradiance monitor (TIM): science results. Sol Phys 230:129–139. doi:10.1007/s11207-005-7433-9

    Article  Google Scholar 

  • Kravčík M, Pokorný J, Kohutiar J, Kovac M, Toth E (2008) Water for the recovery of the climate. A new paradigm. Municipali and TORY Consulting, Kosice

    Google Scholar 

  • Kurc SA, Small EE (2004) Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour Res 40:W09305. doi:10.1029/2004WR003068

    Google Scholar 

  • Květ J, Lukavská J, Tetter M (2002) Biomass and net primary production in graminoid vegetation. In: Freshwater wetlands and their sustainable future: a case study of Trebon Basin Biosphere Reserve, Czech Republic, Man and the Biosphere Series. UNESCO, Paris

  • Lafleur P, Rouse WR, Hardill SG (1987) Components of the surface radiation balance of subarctic wetland terrain units during the snow-free season. Arctic Alpine Res 19:53–63

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Berlin

    Book  Google Scholar 

  • Lee XH, Yu Q, Sun XM, Liu JD, Min QW, Liu YF, Zhang XZ (2004) Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agr Forest Meteorol 122:111–124. doi:10.1016/j.agrformet.2003.02.001

    Article  Google Scholar 

  • Lhomme JP, Elguero E (1999) Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model. Hydrol Earth Syst Sci 3(2):259–270

    Article  Google Scholar 

  • Li LH, Yu Q (2007) Quantifying the effects of advection on canopy energy budgets and water use efficiency in an irrigated wheat field in the North China Plain. Agric Water Manag 89:116–122

    Article  Google Scholar 

  • Liu S, Lu L, Mao D, Jia L (2007) Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol Earth Syst Sci 11:769–783

    Article  Google Scholar 

  • Liu S, Li SG, Yu GR, Sun XM, Zhang LM, Hu ZM, Li YM, Zhang XZ (2009) Surface energy exchanges above two grassland ecosystems on the Qinghai–Tibetan Plateau. Biogeosci Discuss 6:9161–9193

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li B-L (2013) Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor Appl Climatol 11:79–96. doi:10.1007/s00704-012-0643-9

    Article  Google Scholar 

  • McNaughton KG, Jarvis PG (1983) Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT (ed) Water deficit and plant growth, vol 7. Academic Press, New York, pp 1–47

    Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. QJR Meteorol Soc 107:1–27. doi:10.1256/smsqj.45101

    Article  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics. Edward Arnold Press, London

    Google Scholar 

  • Ochsner TE, Horton R, Ren T (2001) A new perspective on soil thermal properties. Soil Sci Soc Am J 65:1641–1647

    Article  CAS  Google Scholar 

  • Oke TR (1987) Boundary layer climates. Methuen, London

    Google Scholar 

  • Olejnik JA (1988) The empirical-method of estimating mean daily and mean 10-day values of latent and sensible-heat near the ground. J Appl Meteorol 27:1359–1368. doi:10.1175/1520-0450(1988)-027

    Article  Google Scholar 

  • Olejnik J, Eulenstein F, Kedziora A, Werner A (2001) Evaluation of a water balance model using data for bare soil and crop surfaces in Middle Europe. Agr Forest Meteorol 106:105–116. doi:10.1016/S0168-1923(00)00208-2

    Article  Google Scholar 

  • Parker SP (2002) McGraw-Hill Dictionary of scientific and technical terms. 6th edn. McGraw-Hill Professional

  • Peacock CE, Hess TM (2004) Estimating evapotranspiration from a reed bed using the Bowen-ratio energy balance method. Hydrol Process 18:247–260

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond 193:120–146. doi:10.1098/rspa.1948.0037

    Article  CAS  Google Scholar 

  • Peters-Lidard CD, Blackburn E, Liang X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55:1209–1224. doi:10.1175/1520-0469-(1998)-055

    Article  Google Scholar 

  • Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng XB, Denning AS (1998) Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Chang Biol 4:461–475. doi:10.1046/j.1365-2486.1998.t01-1-00176

    Article  Google Scholar 

  • Pivec J (2002) Analysis of energetic exchange processes within two different forest ecosystems. Ekologia (Bratislava) 21:38–49

    Google Scholar 

  • Pokorný J, Brom J, Čermák J, Hesslerová P, Huryna H, Nadyezhdina N, Rejšková A (2010) Solar energy dissipation and temperature control by water and plants. Int J Water 5:311–336. doi:10.1504/IJW.2010.038726

    Article  Google Scholar 

  • Ponting C (1993) A green history of the world. In: The environment and the collapse of great civilizations. Penguin, New York

  • Powers SM, Johnson RA, Stanley EH (2012) Nutrient retention and the problem of hydrologic disconnection in streams and wetlands. Ecosystems 15:435–449

    Article  CAS  Google Scholar 

  • Rejšková A, Čížkova H, Brom J, Pokorný J (2010) Transpiration, evapotranspiration and energy fluxes in a temperate wetland dominated by Phalaris arundinacea under hot summer conditions. Ecohydrology 5:19–27. doi:10.1002/eco.184

    Article  Google Scholar 

  • Ripl W (2003) Water: the bloodstream of the biosphere. Phil Trans R Soc B 358:1921–1934. doi:10.1098/rstb.2003.1378

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryszkowski L, Kedziora A (1987) Impact of agricultural landscape structure on energy flow and water cycling. Landsc Ecol 1:85–94

    Article  Google Scholar 

  • Ryszkowski L, Kedziora A (1995) Modification of the effects of global climate change by plant cover structure in an agricultural landscape. Geographia Polonica 65:5–34

    Google Scholar 

  • Ryszkowski L, Kedziora A (2007) Modification of water flows and nitrogen fluxes by shelterbelts. Ecol Eng 29:388–400. doi:10.1016/j.ecoleng.2006.09.023

    Article  Google Scholar 

  • Sanches L, Vourlitis GL, Alves MDC, Pinto-Junior OB, Nogueira JDS (2011) Seasonal pattern of evapotranspiration for a Vochysia divergens forest in Brazilian Pantanal. Wetlands 31:1215–1225. doi:10.1007/s13157-011-0233-0

    Article  Google Scholar 

  • Schneider ED, Sagan D (2005) Into the Cool: Energy Flow. In: Thermodynamics and Life. University of Chicago Press, Chicago

  • Schulze E-D, Beck E, Muller-Hohenstein K (2002) Plant ecology. Springer, Berlin

    Google Scholar 

  • Seják J, Cudlín P, Pokorný J (2012) Valuation ecosystem services as an instrument for implementation of the European landscape convention. In: Westra L, Soskolne C, Spady D (eds) Human health and ecological integrity: ethics, law and human rights. Routledge, New York, pp 69–82

    Google Scholar 

  • Sikora E, Kossowski J (1993) Thermal conductivity and diffusivity estimations of uncompacted and compacted soils using computing methods. Pol J Soil Sci 26:19–26

    Google Scholar 

  • Silvan N, Vasander H, Laine J (2004) Vegetation is the main factor in nutrient retention in a constructed wetland buffer zone. Plant Soil 258:179–187

    Article  CAS  Google Scholar 

  • Suleiman A, Crago R (2004) Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures. Agron J 96:384–390

    Article  Google Scholar 

  • Thom AS (1975) Momentum, mass and heat exchange of plant communities. In: Montheith JL (ed) Vegetation and the atmosphere, vol 1. Academic Press, London, pp 57–110

    Google Scholar 

  • von Randow C, Manzi AO, Kruijt B, de Oliveira PJ, Zanchi FB, Silva RL, Hodnett MG, Gash JHC, Elders JA, Waterloo MJ, Cardoso FL, Kabat P (2004) Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor Appl Climatol 78:5–26. doi:10.1007/s00704-004-0041-z

    Google Scholar 

  • Wallace JS (1995) Calculating evaporation—resistance to factors. Agr Forest Meteorol 73(3–4):353–366

    Article  Google Scholar 

  • Wang KC, Li ZQ, Cribb M (2006) Estimation of evaporative fraction from a combination of day and night land surface temperature and NDVI. A new method to determine the Priestley–Taylor parameter. Remote Sens Environ 102:293–305. doi:10.1016/j.rse.2006.02.007

    Article  Google Scholar 

  • Wessel D, Rouse WR (1994) Moisture and temperature limits of the equilibrium evapotranspiration model. J Appl Meteorol 11:436–442

    Google Scholar 

  • Wever LA, Flanagan LB, Carlson PJ (2002) Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in northern temperate grassland. Agr Forest Meteorol 112:31–49. doi:10.1016/S0168-1923(02)00041-2

    Article  Google Scholar 

  • Wierenga PJ, Nielsen DR, Hagan RM (1969) Thermal properties of a soil based upon field and laboratory measurements. Soil Sci Soc Am J 33:354–360

    Article  Google Scholar 

  • Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agr Forest Meteorol 100:1–18. doi:10.1016/S0168-1923(99)00088-X

    Article  Google Scholar 

  • You ChY, Pence HE, Hasegava PM, Mickelbart MV (2009) Regulation of transpiration to improve crop water use. Crit Rev Plant Sci 28(6):410–431

    Article  Google Scholar 

  • Zhou L, Zhou G (2009) Measurement and modelling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. J Hydrol 372:41–47

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Research Program MSMT Czech Republic (NPV 2B06023) and by the South Bohemia University Grant GAJU 152/2010/Z. The authors express their gratitude to colleagues from ENKI, o.p.s. and to the staff of the company Fiedler & Mágr who maintain and manage the network of meteorological stations including the database. The authors would like to thank anonymous reviewers and editors for their helpful and constructive comments that greatly contributed to improve the final version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Huryna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huryna, H., Brom, J. & Pokorny, J. The importance of wetlands in the energy balance of an agricultural landscape. Wetlands Ecol Manage 22, 363–381 (2014). https://doi.org/10.1007/s11273-013-9334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-013-9334-2

Keywords

Navigation