Skip to main content
Log in

Photocatalytic and Bactericidal Proposal for the Removal of Two Types of Model Pollutants Using Fe Nanoparticles Phytosynthesized with Eichhornia crassipes

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The synthesis of monometallic nanoparticles using the phytosynthesis process is a technique that takes advantage of phytochemical compounds in plants to reduce metal ions. These nanoparticles can have applications in the treatment of water contaminated with chemical or biological agents. In the present work, iron nanoparticles (FeNPs) were synthesized using Eichhornia crassipes extract and their photocatalytic and bactericidal capacities were analyzed. Phenol and Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were used as reference pollutants. The FeNPs obtained were characterized by Ultraviolet–Visible Spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FT-IR) and High-Resolution Transmission Electron Microscopy (HR-TEM) techniques, thus revealing the crystalline and morphological nature of the synthesized NPs. It was observed that pH affects the size and agglomeration of the FeNPs, with pH 4 being the most efficient for photocatalytic activity in phenol degradation (10 mg L−1), while FeNPs pH 12 have high microbicidal activity against Escherichia coli and Staphylococcus aureus bacteria. These results indicate that FeNPs phytosynthesised with E. crassipes extract are a promising option for the treatment of water contaminated with various agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  • Afrouz, M., Ahmadi-Nouraldinvand, F., Elias, S. G., Alebrahim, M. T., Tseng, T. M., & Zahedian, H. (2023). Green synthesis of spermine coated iron nanoparticles and its effect on biochemical properties of Rosmarinus officinalis. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-27844-5.

  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. A. (2010). Heterogeneous Photocatalytic Degradation of Phenols in Wastewater. A review on current status and developments. Desalination, 261(1–2). https://doi.org/10.1016/j.desal.2010.04.062.

  • Akhter, S. M. H., Mohammad, F., & Ahmad, S. (2019). Terminalia belerica Mediated Green Synthesis of Nanoparticles of Copper, Iron and Zinc Metal Oxides as the Alternate Antibacterial Agents Against some Common Pathogens. BioNanoScience, 9(2). https://doi.org/10.1007/s12668-019-0601-4.

  • Anusiya, G., Bharathi, S., Mukesh Praveen, K., Sainandhini, G., & Gowthama Prabu, U. (2020). Extraction and molecular characterization of biological compounds from water hyacinth. Journal of Medicinal Plants Studies, 8(5). https://doi.org/10.22271/plants.2020.v8.i5a.1189.

  • Chien, H. W., Tsai, M. Y., Kuo, C. J., & Lin, C. Lo. (2021). Well-dispersed silver nanoparticles on cellulose filter paper for bacterial removal. Nanomaterials, 11(3). https://doi.org/10.3390/nano11030595.

  • Eslami, S., Ebrahimzadeh, M. A., & Biparva, P. (2018). Green synthesis of safe zero valent iron nanoparticles by: Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Advances, 8(46). https://doi.org/10.1039/c8ra04451a.

  • Goutam, S. P., Saxena, G., Singh, V., Yadav, A. K., Bharagava, R. N., & Thapa, K. B. (2018). Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chemical Engineering Journal, 336. https://doi.org/10.1016/j.cej.2017.12.029.

  • Haghighizadeh, A., Aghababai Beni, A., Haghmohammadi, M. et al. (2023). Green Synthesis of ZnO-TiO2 Nano-Photocatalyst Doped with Fe(III) Ions Using Bitter Olive Extract to Treat Textile Wastewater Containing Reactive Dyes. Water Air Soil Pollut 234(366). https://doi.org/10.1007/s11270-023-06374-w.

  • Hamad, K. I., Humadi, J. I., Issa, Y. S., Gheni, S. A., Ahmed, M. A., & Hassan, A. A. (2022). Enhancement of activity and lifetime of nano-iron oxide catalyst for environmentally friendly catalytic phenol oxidation process. Cleaner Engineering and Technology, 11. https://doi.org/10.1016/j.clet.2022.100570.

  • Izadiyan, Z., Shameli, K., Miyake, M., Hara, H., Mohamad, S. E. B., Kalantari, K., Taib, S. H. M., & Rasouli, E. (2020). Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arabian Journal of Chemistry, 13(1). https://doi.org/10.1016/j.arabjc.2018.02.019.

  • Kaleem, M., Anjum Minhas, L., Zaffar Hashmi, M., Umer Farooqi, H. M., Waqar, R., Kamal, K., Saad Aljaluod, R., Alarjani, K. M., & Samad Mumtaz, A. (2024). Biogenic synthesis of iron oxide nanoparticles and experimental modeling studies on the removal of heavy metals from wastewater. Journal of Saudi Chemical Society, 28(1). https://doi.org/10.1016/j.jscs.2023.101777.

  • Kamarulzaman, N., Kasim, M. F., & Rusdi, R. (2015). Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1034-9.

  • Khalafi, T., Buazar, F., & Ghanemi, K. (2019). Phycosynthesis and Enhanced Photocatalytic Activity of Zinc Oxide Nanoparticles Toward Organosulfur Pollutants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43368-3.

  • Kuang, Y., Zhou, Y., Chen, Z., Megharaj, M., & Naidu, R. (2013). Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresource Technology, 136. https://doi.org/10.1016/j.biortech.2013.03.018.

  • Lam, S. M., Sin, J. C., Zeng, H., Lin, H., Li, H., Chai, Y. Y., Choong, M. K., & Mohamed, A. R. (2021). Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Materials Science in Semiconductor Processing, 123. https://doi.org/10.1016/j.mssp.2020.105574.

  • Madivoli, E. S., Kareru, P. G., Maina, E. G., Nyabola, A. O., Wanakai, S. I., & Nyang’au, J. O. (2019). Biosynthesis of iron nanoparticles using Ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Applied Sciences, 1(5). https://doi.org/10.1007/s42452-019-0511-7.

  • Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. In Journal of Physical Chemistry Letters 9(23). American Chemical Society. https://doi.org/10.1021/acs.jpclett.8b02892.

  • Radini, I. A., Hasan, N., Malik, M. A., & Khan, Z. (2018). Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 183. https://doi.org/10.1016/j.jphotobiol.2018.04.014.

  • Rodríguez Pava, C. N., Zarate Sanabria, A. G., & Sánchez Leal, L. C. (2017). Actividad antimicrobiana de cuatro variedades de plantas frente a patógenos de importancia clínica en Colombia. Nova, 15(27). https://doi.org/10.22490/24629448.1963.

  • Salgado, P., Márquez, K., Rubilar, O., Contreras, D., & Vidal, G. (2019). The effect of phenolic compounds on the green synthesis of iron nanoparticles (FexOy-NPs) with photocatalytic activity. Applied Nanoscience (Switzerland), 9(3). https://doi.org/10.1007/s13204-018-0931-5.

  • Saltos E., C., Chuquer S., D., Pazmiño V., K., Fernández M., L., & Pilaquinga F., F. (2019). Remoción de tartrazina en agua usando nanopartículas de hierro cerovalentes. InfoANALÍTICA, 7(2). https://doi.org/10.26807/ia.v7i2.106.

  • Sharmila, G., Sakthi Pradeep, R., Sandiya, K., Santhiya, S., Muthukumaran, C., Jeyanthi, J., Manoj Kumar, N., & Thirumarimurugan, M. (2018). Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: Characterization and its antibacterial application. Journal of Molecular Structure, 1165. https://doi.org/10.1016/j.molstruc.2018.04.011.

  • Sriramulu, M., Balaji, & Sumathi, S. (2021). Photo Catalytic, Antimicrobial and Antifungal Activity of Biogenic Iron Oxide Nanoparticles Synthesised Using Aegle marmelos Extracts. Journal of Inorganic and Organometallic Polymers and Materials, 31(4). https://doi.org/10.1007/s10904-020-01812-2.

  • Tapia-Arreola, A. K., Ruiz-Garcia, D. A., Rodulfo, H., Sharma, A., & De Donato, M. (2022). High Frequency of Antibiotic Resistance Genes (ARGs) in the Lerma River Basin, Mexico. International Journal of Environmental Research and Public Health, 19(21). https://doi.org/10.3390/ijerph192113988.

  • Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., LewisOscar, F., & Pugazhendhi, A. (2019). Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. Journal of Photochemistry and Photobiology B: Biology, 192. https://doi.org/10.1016/j.jphotobiol.2018.12.025.

  • Vitta, Y., Figueroa, M., Calderon, M., & Ciangherotti, C. (2020). Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Materials Science for Energy Technologies, 3. https://doi.org/10.1016/j.mset.2019.10.014.

  • Yusefi, M., Shameli, K., Yee, O. S., Teow, S. Y., Hedayatnasab, Z., Jahangirian, H., Webster, T. J., & Kuča, K. (2021). Green synthesis of fe3o4 nanoparticles stabilized by a garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. International Journal of Nanomedicine, 16. https://doi.org/10.2147/IJN.S284134.

  • Zamorska, J., & Kiełb-Sotkiewicz, I. (2021). A biological method of treating surface water contaminated with industrial waste leachate. Water (Switzerland), 13(24). https://doi.org/10.3390/w13243644.

Download references

Acknowledgements

The authors are grateful for the financial support from the National Technological Institute of Mexico (TecNM), the LIIA Instituto Tecnológico de Toluca (ITTol) and the COMECYT chair scholarship awarded to Monserrat Velázquez Hernández (ESYCA2023-1-2749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Martínez-Gallegos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Hernández, A.M., Martínez-Gallegos, S., Schabes-Retchkiman, P. et al. Photocatalytic and Bactericidal Proposal for the Removal of Two Types of Model Pollutants Using Fe Nanoparticles Phytosynthesized with Eichhornia crassipes. Water Air Soil Pollut 235, 284 (2024). https://doi.org/10.1007/s11270-024-07098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07098-1

Keywords

Navigation