Skip to main content

Advertisement

Log in

Rainout and Washout Contributions to Wet Atmospheric Deposition in Southern South America

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Wet atmospheric deposition (AD) is a crucial process that determines nutrient inputs from the atmosphere to ecosystems. It consists of two distinct processes: rainout (RO) and washout (WO). RO occurs when aerosols and gases in the free troposphere are incorporated into rainwater, while WO happens when aerosols and gases present in the atmospheric boundary layer are washed out by rain droplets. Dissolved ions in rainwater have either terrestrial or marine origins, which are typically estimated using the enrichment factor. In this study, we propose two innovative methods to estimate the relative contribution of ions by RO or WO based on rain event collections, and we apply these methods to characterize wet AD in southern South America. We collected rain events with deposition samplers at four sites in a 700-km east–west transect during 2007. Our new methods yielded consistent and reasonable estimates of wet AD amounts by RO and WO. We found that some elements, mainly marine (Na+, Cl, SO42−), were mostly deposited by RO, while others, including Ca2+, NO3, and Mg2+, had similar deposition rates by RO and WO. Two terrestrial ions, NH4+ and K+, were mainly deposited by WO. These results suggest that the relative contribution of RO or WO in the region is related to the marine or terrestrial origin of the ions, the size of the compound formed after emission, the maximum atmospheric loading capacity of each ion, and the distance to the potential emission source. The stoichiometry and quantities of wet AD in the region suggest that both oceanic and agricultural sources contribute to wet AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data and materials supporting the findings of this study are available upon request from the corresponding author. Requests for access to the data and materials should be directed to Danilo A. Carnelos at carnelos@agro.uba.ar.

References

  • Adon, M., Yoboué, V., Galy-Lacaux, C., Liousse, C., Diop, B., Doumbia, E. H. T., Gardrat, E., Ndiaye, S. A., & Jarnot, C. (2016). Measurements of NO2, SO2, NH3, HNO3 and O3 in West African urban environments. Atmospheric Environment, 135, 31–40. https://doi.org/10.1016/j.atmosenv.2016.03.050

    Article  CAS  Google Scholar 

  • Aikawa, M., Kajino, M., Hiraki, T., & Mukai, H. (2014). The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5mm precipitation increments and numerical simulation. Atmospheric Environment, 95, 165–174. https://doi.org/10.1016/j.atmosenv.2014.06.015

    Article  CAS  Google Scholar 

  • Allen, A. G., Cardoso, A. A., & Da Rocha, G. O. (2004). Influence of sugar cane burning on aerosol soluble ion composition in Southeastern Brazil. Atmospheric Environment, 38, 5025–5038. https://doi.org/10.1016/j.atmosenv.2004.06.019

    Article  CAS  Google Scholar 

  • Andreae, M. O. (1982). Marine aerosol chemistry at Cape Grim, Tasmania, and Townsville Queensland. Journal of Geophysical Research, 87, 8875–8885. https://doi.org/10.1029/JC087iC11p08875

    Article  CAS  Google Scholar 

  • Anil, I., Alagha, O., & Karaca, F. (2017). Effects of transport patterns on chemical composition of sequential rain samples: Trajectory clustering and principal component analysis approach. Air Quality, Atmosphere & Health, 10, 1193–1206. https://doi.org/10.1007/s11869-017-0504-x

    Article  CAS  Google Scholar 

  • Ayers, G. P., Fukuzaki, N., Gillett, R. W., Selleck, P. W., Powell, J. C., & Hara, H. (1998). Thymol as a biocide in Japanese rainwater. Journal of Atmospheric Chemistry, 30, 301–310. https://doi.org/10.1023/A:1006068415125

    Article  CAS  Google Scholar 

  • Baker, A. R., Weston, K., Kelly, S. D., Voss, M., Streu, P., & Cape, J. N. (2007). Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation. Deep Sea Research Part I: Oceanographic Research Papers, 54, 1704–1720. https://doi.org/10.1016/j.dsr.2007.07.001

    Article  CAS  Google Scholar 

  • Baker, J., Battye, W. H., Robarge, W., Pal Arya, S., & Aneja, V. P. (2020). Modeling and measurements of ammonia from poultry operations: Their emissions, transport, and deposition in the Chesapeake Bay. Science of the Total Environment, 706, 135290. https://doi.org/10.1016/j.scitotenv.2019.135290

    Article  CAS  Google Scholar 

  • Barma, S.D., Uttarwar, S.B., Barane, P., Bhat, N., Mahesha, A. (2022) Evaluation of Era5 and Imerg precipitation data for risk assessment of water cycle variables of a large river basin in South Asia using satellite data and Archimedean copulas. Water Conservation & Management, 6(61):69 https://doi.org/10.26480/wcm.01.2022.61.69

  • Bayramoğlu Karşı, M. B., Yeni̇soy-Karakaş, S., & Karakaş, D. (2018). Investigation of washout and rainout processes in sequential rain samples. Atmospheric Environment, 190, 53–64. https://doi.org/10.1016/j.atmosenv.2018.07.018

    Article  CAS  Google Scholar 

  • Bertram, T.H., Perring, A.E., Wooldridge, P.J., Crounse, J.D., Kwan, A.J., Wennberg, P.O., Scheuer, E., Dibb, J., Avery, M., Sachse, G., Vay, S.A., Crawford, J.H., McNaughton, C.S., Clarke, A., Pickering, K.E., Fuelberg, H., Huey, G., Blake, D.R., Singh, H.B., Hall, S.R., Shetter, R.E., Fried, A., Heikes, B.G., Cohen, R.C. (2007) Direct measurements of the convective recycling of the upper troposphere. Science (80-), 315:816–820 https://doi.org/10.1126/science.1134548

  • Bertrand, G., Celle-Jeanton, H., Laj, P., Rangognio, J., & Chazot, G. (2008). Rainfall chemistry: Long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). Journal of Atmospheric Chemistry, 60, 253–271. https://doi.org/10.1007/s10874-009-9120-y

    Article  CAS  Google Scholar 

  • Boone Kauffman, J., Cummings, D.L., Ward, D.E. (2011) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrad. Society, 82:519–531

  • Bourcier, L., Sellegri, K., Masson, O., Zangrando, R., Barbante, C., Gambaro, A., Pichon, J.-M., Boulon, J., & Laj, P. (2010). Experimental evidence of biomass burning as a source of atmospheric 137Cs, puy de Dôme (1465 m a.s.l.) France. Atmospheric Environment, 44, 2280–2286. https://doi.org/10.1016/j.atmosenv.2010.04.017

    Article  CAS  Google Scholar 

  • Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, J., Rufino, M. C., & Stehfest, E. (2013). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences, 110, 20882–20887. https://doi.org/10.1073/pnas.1012878108

    Article  CAS  Google Scholar 

  • Carnelos, D. A., Portela, S. I., Jobbágy, E. G., Jackson, R. B., Di Bella, C. M., Panario, D., Fagúndez, C., Piñeiro-Guerra, J. M., Grion, L., & Piñeiro, G. (2019). A first record of bulk atmospheric deposition patterns of major ions in southern South America. Biogeochemistry, 144, 261–271. https://doi.org/10.1007/s10533-019-00584-3

    Article  CAS  Google Scholar 

  • Cayuela, C., Latron, J., Geris, J., & Llorens, P. (2019). Spatio-temporal variability of the isotopic input signal in a partly forested catchment: Implications for hydrograph separation. Hydrological Processes, 33, 36–46. https://doi.org/10.1002/hyp.13309

    Article  Google Scholar 

  • Celle-jeanton, H., Travi, Y., Loyepilot, M., Huneau, F., & Bertrand, G. (2009). Rainwater chemistry at a Mediterranean inland station (Avignon, France): Local contribution versus long-range supply. Atmospheric Research, 91, 118–126. https://doi.org/10.1016/j.atmosres.2008.06.003

    Article  CAS  Google Scholar 

  • Cerón, R. M., Cerón, J. G., Muriel, M., & Cárdenas, B. (2008). Identification of ion sources in rainwater of a coastal site impacted by the gas and oil industry in the southeast of Mexico. Global NEST Journal, 10, 92–100. https://doi.org/10.30955/gnj.000407

    Article  Google Scholar 

  • Chin, M., Diehl, T., Ginoux, P., & Malm, W. (2007). Intercontinental transport of pollution and dust aerosols: Implications for regional air quality. Atmospheric Chemistry and Physics, 7, 5501–5517. https://doi.org/10.5194/acp-7-5501-2007

    Article  CAS  Google Scholar 

  • Chung, E. S., Sohn, B. J., Schmetz, J., & Koenig, M. (2007). Diurnal variation of upper tropospheric humidity and its relations to convectiye activities over tropical Africa. Atmospheric Chemistry and Physics, 7, 2489–2502. https://doi.org/10.5194/acp-7-2489-2007

    Article  CAS  Google Scholar 

  • Colin, J. L., Jaffrezo, J. L., Pinart, J., & Roulette-Cadene, S. (1987). Sequential sampling of snow in a rural area. Experimentation and identification of the acidifying agents. Atmospheric Environment, 21, 1147–1157. https://doi.org/10.1016/0004-6981(87)90242-3

    Article  CAS  Google Scholar 

  • Conradie, E. H., Van Zyl, P. G., Pienaar, J. J., Beukes, J. P., Galy-Lacaux, C., Venter, A. D., & Mkhatshwa, G. V. (2016). The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmospheric Environment, 146, 113–131. https://doi.org/10.1016/j.atmosenv.2016.07.033

    Article  CAS  Google Scholar 

  • Cooper, J. A., Currie, L. A., & Klouda, G. A. (1981). Assessment of contemporary carbon combustion source contributions to urban air particulate levels using carbon-14 measurements. Environmental Science and Technology, 15, 1045–1050. https://doi.org/10.1021/es00091a002

    Article  CAS  Google Scholar 

  • Coutinho, L. M. (1990). Fire in the ecology of the Brazilian Cerrado (pp. 82–105). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-75395-4_6

    Book  Google Scholar 

  • Dadashazar, H., Ma, L., & Sorooshian, A. (2019). Sources of pollution and interrelationships between aerosol and precipitation chemistry at a central California site. Science of the Total Environment, 651, 1776–1787. https://doi.org/10.1016/j.scitotenv.2018.10.086

    Article  CAS  Google Scholar 

  • Durana, N., Casado, H., Ezcurra, A., Garcia, C., Lacaux, J. P., & Van Dinh, P. (1992). Experimental study of the scavenging process by means of a sequential precipitation collector, preliminary results. Atmospheric Environment Part A General Topics, 26, 2437–2443. https://doi.org/10.1016/0960-1686(92)90373-S

    Article  Google Scholar 

  • Ekman, A. M. L., Wang, C., Ström, J., & Krejci, R. (2006). Explicit simulation of aerosol physics in a cloud-resolving model: Aerosol transport and processing in the free troposphere. Journal of Atmospheric Science, 63, 682–696. https://doi.org/10.1175/JAS3645.1

    Article  Google Scholar 

  • Erich, R. (1980). La depresión del noroeste argentino. FCEN-UBA.

  • Fang, Y., Fiore, A. M., Horowitz, L. W., Levy, H., Hu, Y., & Russell, A. G. (2010). Sensitivity of the NO y budget over the United States to anthropogenic and lightning NO x in summer. Journal of Geophysical Research, 115, D18312. https://doi.org/10.1029/2010JD014079

    Article  CAS  Google Scholar 

  • Fayiga, A. O., Ipinmoroti, M. O., & Chirenje, T. (2017). Environmental pollution in Africa, Environment Development and Sustainability. Netherlands: Springer. https://doi.org/10.1007/s10668-016-9894-4

    Book  Google Scholar 

  • Fernández-Martínez, M., Margalef, O., Sayol, F., Asensio, D., Bagaria, G., Corbera, J., Sabater, F., Domene, X., & Preece, C. (2019). Sea spray influences water chemical composition of Mediterranean semi-natural springs. CATENA, 173, 414–423. https://doi.org/10.1016/j.catena.2018.10.035

    Article  CAS  Google Scholar 

  • Fiebig, M., Petzold, A., Wandinger, U., Wendisch, M., Kiemle, C., Stifter, A., Ebert, M., Rother, T., Leiterer, U., 2002. Optical closure for an aerosol column: Method, accuracy, and inferable properties applied to a biomass-burning aerosol and its radiative forcing. Journal of Geophysical Research: Atmospheres, 107. https://doi.org/10.1029/2000JD000192

  • Fischer, B. M. C., Stähli, M., & Seibert, J. (2017). Pre-event water contributions to runoff events of different magnitude in pre-alpine headwaters. Hydrology Research, 48, 28–47. https://doi.org/10.2166/nh.2016.176

    Article  Google Scholar 

  • Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., … Erisman, J. W. (2009). Atmospheric composition change: Ecosystems-atmosphere interactions. Atmospheric Environment, 43, 5193–5267. https://doi.org/10.1016/j.atmosenv.2009.07.068

    Article  CAS  Google Scholar 

  • Fueglistaler, S., Wernli, H., & Peter, T. (2004). Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. Journal of Geophysical Research: Atmospheres, 109, 1–16. https://doi.org/10.1029/2003jd004069

    Article  Google Scholar 

  • Galloway, J. N., Keene, W. C., & Likens, G. E. (1996). Processes controlling the composition of precipitation at a remote southern hemispheric location: Torres del Paine National Park Chile. Journal of Geophysical Research: Atmospheres, 101, 6883–6897. https://doi.org/10.1029/95JD03229

    Article  CAS  Google Scholar 

  • Garaga, R., Chakraborty, S., Zhang, H., Gokhale, S., Xue, Q., & Kota, S. H. (2020). Influence of anthropogenic emissions on wet deposition of pollutants and rainwater acidity in Guwahati, a UNESCO heritage city in Northeast India. Atmospheric Research, 232, 104683. https://doi.org/10.1016/j.atmosres.2019.104683

    Article  CAS  Google Scholar 

  • Garcia, M. G., Lecomte, K. L., & Depetris, P. J. (2022). Natural and anthropogenic sources of solutes in the wet precipitation of a densely populated city of Southern South America. Chemosphere, 287, 132307. https://doi.org/10.1016/j.chemosphere.2021.132307

    Article  CAS  Google Scholar 

  • Geilfus, C. M. (2019). Chloride in soil: From nutrient to soil pollutant. Environmental and Experimental Botany, 157, 299–309. https://doi.org/10.1016/j.envexpbot.2018.10.035

    Article  CAS  Google Scholar 

  • Gonçalves, F. L. T., Massambani, O., Beheng, K. D., Vautz, W., Schilling, M., Solci, M. C., Rocha, V., & Klockow, D. (2000). Modelling and measurements of below cloud scavenging processes in the highly industrialised region of Cubatao-Brazil. Atmospheric Environment, 34, 4113–4120. https://doi.org/10.1016/S1352-2310(99)00503-8

    Article  Google Scholar 

  • Gong, S.L. (2003). A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochemical Cycles, 17(4) https://doi.org/10.1029/2003gb002079

  • Hedin, L.O., Armesto, J.J., Johnson, A.H. (1995). Patterns of nutrient loss from unpolluted,old-growth temperate forest: Evaluation of biogeochemical theory. 76, 493–509

  • Holland, E. A., Dentener, F. J., Braswell, B. H., & Sulzman, J. M. (1999). Contemporary and pre-industrail global reactive nitrogen budgets. Biogeochemistry, 46, 7–43. https://doi.org/10.1007/BF01007572

    Article  CAS  Google Scholar 

  • Hou, P., Wu, S., McCarty, J. L., & Gao, Y. (2018). Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmospheric Chemistry and Physics, 18, 8173–8182. https://doi.org/10.5194/acp-18-8173-2018

    Article  CAS  Google Scholar 

  • Isherwood, K.F. (2000). Mineral fertilizer use, IFA International Fertilizer Industry Association

  • Keene, W. C., Pszenny, A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research, 91, 6647–6658. https://doi.org/10.1029/JD091iD06p06647

    Article  CAS  Google Scholar 

  • Knippertz, P., Coe, H., Chiu, J. C., Evans, M. J., Fink, A. H., Kalthoff, N., Liousse, C., Mari, C., Allan, R. P., Brooks, B., Danour, S., Flamant, C., Jegede, O. O., Lohou, F., & Marsham, J. H. (2015). The DACCIWA Project: Dynamics-aerosol-chemistry-cloud interactions in West Africa. Bulletin of the American Meteorological Society, 96, 1451–1460. https://doi.org/10.1175/BAMS-D-14-00108.1

    Article  Google Scholar 

  • Kulshrestha, U. C., Reddy, L. A. K., Satyanarayana, J., & Kulshrestha, M. J. (2009). Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region. Atmospheric Environment, 43, 5123–5127. https://doi.org/10.1016/j.atmosenv.2009.07.025

    Article  CAS  Google Scholar 

  • Lara, L. B. L., Artaxo, P., Martinelli, L., Victoria, R., Camargo, P., Krusche, A., Ayers, G., Ferraz, E. S., & Ballester, M. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmospheric Environment, 35, 4937–4945. https://doi.org/10.1016/S1352-2310(01)00198-4

    Article  CAS  Google Scholar 

  • Lavado, R. S. (1983). Evaluación de la relación entre composición química del agua de lluvia y el grado de salinidad y sodicidad de distintos suelos. Revista De La Facultad De Agronomía, 4, 135–139.

    Google Scholar 

  • Lazaridis, M. (2011). First principles of meteorology and air pollution 0. Choice Reviews Online. https://doi.org/10.1007/978-94-007-0162-5

    Article  Google Scholar 

  • Li, J., Han, Z., & Yao, X. (2018). A modeling study of the influence of sea salt on inorganic aerosol concentration, size distribution, and deposition in the western Pacific Ocean. Atmospheric Environment, 188, 157–173. https://doi.org/10.1016/j.atmosenv.2018.06.030

    Article  CAS  Google Scholar 

  • Li, W., Wang, W., Sun, R., Li, M., Liu, H., Shi, Y., Zhu, D., Li, J., Ma, L., & Fu, S. (2023). Influence of nitrogen addition on the functional diversity and biomass of fine roots in warm-temperate and subtropical forests. Forest Ecology and Management, 545, 121309. https://doi.org/10.1016/j.foreco.2023.121309

    Article  Google Scholar 

  • Luo, Z., Kley, D., Johnson, R. H., & Smit, H. (2007). Ten years of measurements of tropical upper-tropospheric water vapor by MOZAIC. Part I: Climatology, variability, transport, and relation to deep convection. Journal of Climate, 20, 418–435. https://doi.org/10.1175/JCLI3997.1

    Article  Google Scholar 

  • Luo, X., Pan, Y., Goulding, K., Zhang, L., Liu, X., & Zhang, F. (2016). Spatial and seasonal variations of atmospheric sulfur concentrations and dry deposition at 16 rural and suburban sites in China. Atmospheric Environment, 146, 79–89. https://doi.org/10.1016/j.atmosenv.2016.07.038

    Article  CAS  Google Scholar 

  • Marticorena, B., Chatenet, B., Rajot, J. L., Bergametti, G., Deroubaix, A., Vincent, J., Kouoi, A., Coulibaly, M., Diallo, A., Koné, I., Maman, A., T., NDiaye, A., & Zakou. (2017). Mineral dust over west and central Sahel: Seasonal patterns of dry and wet deposition fluxes from a pluriannual sampling (2006–2012). Journal of Geophysical Research: Atmospheres, 122, 1338–1364. https://doi.org/10.1002/2016JD025995

    Article  Google Scholar 

  • McMurry, P. H., & Wilson, J. C. (1983). Droplet phase (heterogeneous) and gas phase (homogeneous) contributions to secondary ambient aerosol formation as functions of relative humidity. Journal of Geophysical Research, 88, 5101–5108. https://doi.org/10.1029/JC088iC09p05101

    Article  CAS  Google Scholar 

  • Meira, G. R., Andrade, M. C., Padaratz, I. J., Alonso, M. C., & Borba, J. C. (2006). Measurements and modelling of marine salt transportation and deposition in a tropical region in Brazil. Atmospheric Environment, 40, 5596–5607. https://doi.org/10.1016/j.atmosenv.2006.04.053

    Article  CAS  Google Scholar 

  • Michel, C. (2012). Análisis de la Concentración de Iones en Agua de Lluvia en la Región Sur de la Cuenca del Río de la Plata

  • Migliavacca, D., Teixeira, E.C., Wiegand, F., Machado, A.C.M., Sanchez, J. (2005) Atmospheric precipitation and chemical composition of an urban site Guaíba Hydrographic Basin, Brazil. 39 1829 1844 https://doi.org/10.1016/j.atmosenv.2004.12.005

  • Milford, J. B., & Davidson, C. I. (1987). Tine bases of particulate sulfate aed nitrate in the atmosphere—A review. Journal of the Air Pollution Control Association, 37, 125–134. https://doi.org/10.1080/08940630.1987.10466206

    Article  CAS  Google Scholar 

  • Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal of the Air and Waste Management Association, 54, 644–680. https://doi.org/10.1080/10473289.2004.10470936

    Article  CAS  Google Scholar 

  • Morales S., R.G.E., Leiva G., M. (2005). Distribucioón y concentraciones críticas de material particulado en la ciudad de santiago. In: Morales S., R.G.E. (Eds.), Contaminación Atmosférica Urbana. Episodios Críticos de La Contaminación Ambiental En La Ciudad de Santiago. Editorial Universitaria, pp. 121–209

  • Munger, J. W., & Eisenreich, S. J. (1983). Continental-scale variations in precipitation chemistry. Environmental Science and Technology, 17, 32A-42A. https://doi.org/10.1021/es00107a722

    Article  CAS  Google Scholar 

  • Murphy, G. M., Barnatán, I. E., Damario, E. A., Fernández Long, M. E., García Skabar, Y., Hurtado, R., Lamas, A. F., Maio, S., Martinez, M. I., Moschini, R. C., Murphy, G. M., Pascale, A. J., Sepulcri, M. G., Serio, L. A., Spescha, L. B., Valtorta, S. E., & Veliz, A. E. (2011). Agrometeorología, ago 2013 (Ed). Facultad de Agronomia Universidad de Buenos Aires, Buenos Aires.

  • Norman, M., Das, S. N., Pillai, A. G., Granat, L., & Rodhe, H. (2001). Influence of air mass trajectories on the chemical composition of precipitation in India. Atmospheric Environment, 35, 4223–4235. https://doi.org/10.1016/S1352-2310(01)00251-5

    Article  CAS  Google Scholar 

  • Ohata, S., Moteki, N., Mori, T., Koike, M., & Kondo, Y. (2016). A key process controlling the wet removal of aerosols: New observational evidence. Science and Reports, 6, 1–9. https://doi.org/10.1038/srep34113

    Article  CAS  Google Scholar 

  • Ojelede, M. E., Annegarn, H. J., Price, C., Kneen, M. A., & Goyns, P. (2008). Lightning-produced NOx budget over the Highveld region of South Africa. Atmospheric Environment, 42, 5706–5714.

    Article  CAS  Google Scholar 

  • Oke, T.R. (1987) Boundary layer climates, Second edi. ed. Taylor & Francis e-Library, 2002

  • Oruc, I., Akkoyunlu, B. O., Dogruel, M., & Tayanc, M. (2018). Chemical analysis of wet deposition sequential samples at Istanbul Turkey. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 10, 126–132. https://doi.org/10.29137/umagd.419664

    Article  Google Scholar 

  • Ouafo-Leumbe, M. R., Galy-Lacaux, C., Liousse, C., Pont, V., Akpo, A., Doumbia, T., Gardrat, E., Zouiten, C., Sigha-Nkamdjou, L., & Ekodeck, G. E. (2018). Chemical composition and sources of atmospheric aerosols at Djougou (Benin). Meteorology and Atmospheric Physics, 130, 591–609. https://doi.org/10.1007/s00703-017-0538-5

    Article  Google Scholar 

  • Padgett, P. E., & Minnich, R. A. (2008). Wet deposition of nitrogenous pollutants and the effect of storm duration and wind direction: A case study from inland southern California. Water, Air, and Soil Pollution, 187, 337–341. https://doi.org/10.1007/s11270-007-9493-y

    Article  CAS  Google Scholar 

  • Pelicho, A. F., Martins, L. D., Nomi, S. N., & Solci, M. C. (2006). Integrated and sequential bulk and wet-only samplings of atmospheric precipitation in Londrina, South Brazil (1998–2002). Atmospheric Environment, 40, 6827–6835. https://doi.org/10.1016/j.atmosenv.2006.05.075

    Article  CAS  Google Scholar 

  • Peretti, M., Piñeiro, G., Fernández Long, M. E., & Carnelos, D. A. (2020). Influence of the precipitation interval on wet atmospheric deposition. Atmospheric Environment, 237, 117580. https://doi.org/10.1016/j.atmosenv.2020.117580

    Article  CAS  Google Scholar 

  • Petzold, A., Fiebig, M., Flentje, H., Keil, A., Leiterer, U., Schröder, F., Stifter, A., Wendisch, M., & Wendling, P. (2002). Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98). Journal of Geophysical Research: Atmospheres, 107, 1–18. https://doi.org/10.1029/2001JD001043

    Article  Google Scholar 

  • Petzold, A., Rasp, K., Weinzierl, B., Esselborn, M., Hamburger, T., Dörnbrack, A., Kandler, K., Schütz, L., Knippertz, P., Fiebig, M., & Virkkula, A. (2009). Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61, 118–130. https://doi.org/10.1111/j.1600-0889.2008.00383.x

    Article  CAS  Google Scholar 

  • Piñeiro, G., Paruelo, J. M., & Oesterheld, M. (2006). Potential long-term impacts of livestock introduction on carbon and nitrogen cycling in grasslands of Southern South America. Global Change Biology, 12, 1267–1284. https://doi.org/10.1111/j.1365-2486.2006.01173.x

    Article  Google Scholar 

  • Qiao, X., Xiao, W., Jaffe, D., Kota, S. H., Ying, Q., & Tang, Y. (2015). Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province China. Science of The Total Environment, 511, 28–36. https://doi.org/10.1016/j.scitotenv.2014.12.028

    Article  CAS  Google Scholar 

  • Rogora, M., Mosello, R., Arisci, S., Brizzio, M. C., Barbieri, A., Balestrini, R., Waldner, P., Schmitt, M., Stähli, M., Thimonier, A., Kalina, M., Puxbaum, H., Nickus, U., Ulrich, E., & Probst, A. (2006). An overview of atmospheric deposition chemistry over the Alps: Present status and long-term trends. Hydrobiologia, 562, 17–40. https://doi.org/10.1007/s10750-005-1803-z

    Article  CAS  Google Scholar 

  • Roy, A., Chatterjee, A., Ghosh, A., Das, S. K., Ghosh, S. K., & Raha, S. (2019). Below-cloud scavenging of size-segregated aerosols and its effect on rainwater acidity and nutrient deposition: A long-term (2009–2018) and real-time observation over eastern Himalaya. Science of the Total Environment, 674, 223–233. https://doi.org/10.1016/j.scitotenv.2019.04.165

    Article  CAS  Google Scholar 

  • Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., & Hillamo, R. (2007). Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: Experimental and modelling assessments. Atmospheric Environment, 41, 3577–3589. https://doi.org/10.1016/j.atmosenv.2006.12.053

    Article  CAS  Google Scholar 

  • Schlesinger, W. H. (2000). Biogeoquimica, un análisis del cambio global. Barcelona, España: Ariel, SA.

    Google Scholar 

  • Schlesinger, W.H., Bernhardt, E.S. (2013). Biogeochemistry: An analysis of global change. Elsevier Inc

  • Shepon, A., Gildor, H., Labrador, L.J., Butler, T., Ganzeveld, L.N., Lawrence, M.G. (2007). Global reactive nitrogen deposition from lightning NO x. Journal of Geophysical Research: Atmospheres, 112. https://doi.org/10.1029/2006JD007458

  • Souza, P.A. De, Mello, W.Z. De, Maldonado, J. (2006). Composicao quimica da chuva e aporte atmosférico na Ilha Grande, RJ 29:471–476

  • Sportisse B. (2010). Fundamentals in Air Pollution.https://doi.org/10.1007/978-90-481-2970-6

  • Thornton, D. C., Bandy, A. R., Blomquist, B. W., Bradshaw, J. D., & Blake, D. R. (1997). Vertical transport of sulfur dioxide and dimethyl sulfide in deep convection and its role in new particle formation. Journal of Geophysical Research: Atmospheres, 102, 28501–28509. https://doi.org/10.1029/97jd01647

    Article  CAS  Google Scholar 

  • Tsai, Y. I., & Cheng, M. T. (2004). Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere, 54, 1171–1181. https://doi.org/10.1016/j.chemosphere.2003.09.021

    Article  CAS  Google Scholar 

  • Udelhofen, P.M., Hartmann, L. (1995). Influence of Tropical Cloud Systems on the Relative Humidity in the Upper Troposphere. 100:7423-7440

  • Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C. U., Aas, W., Baker, A., Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J., Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N. M., Nickovic, S., … Reid, N. W. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3–100. https://doi.org/10.1016/j.atmosenv.2013.10.060

    Article  CAS  Google Scholar 

  • Vodacek, A., Kremens, R. L., Fordham, A. J., Vangorden, S. C., Luisi, D., & Schott, J. R. (2002). Remote optical detection of biomass burning using a potassium emission signature. International Journal of Remote Sensing, 23, 2721–2726.

    Article  Google Scholar 

  • Wakamatsu, S., Utsunomiya, A., Han, J. S., Mori, A., Uno, I., & Uehara, K. (1996). Seasonal variation in atmospheric aerosols concentration covering Northern Kyushu, Japan and Seoul Korea. Atmospheric Environment, 30, 2343–2354. https://doi.org/10.1016/1352-2310(95)00421-1

    Article  CAS  Google Scholar 

  • Walker, J. T., Aneja, V. P., & Dickey, D. A. (2000). Atmospheric transport and wet deposition of ammonium in North Carolina. Atmospheric Environment, 34, 3407–3418.

    Article  CAS  Google Scholar 

  • Warneck, P. (2000). Chapter 7 The atmospheric aerosol. In: International Geophysics. pp. 346–450. https://doi.org/10.1016/S0074-6142(00)80036-4

  • Wilson, T. (1975). Salinity and the major elements of seawater. In J. P. Riley & G. Skirrow (Eds.), Chemical oceanography (pp. 365–413). Academic Press.

    Google Scholar 

  • Xing, J., Song, J., Yuan, H., Li, X., Li, N., Duan, L., Qu, B., Wang, Q., & Kang, X. (2017). Chemical characteristics, deposition fluxes and source apportionment of precipitation components in the Jiaozhou Bay, North China. Atmospheric Research, 190, 10–20. https://doi.org/10.1016/j.atmosres.2017.02.001

    Article  CAS  Google Scholar 

  • Xu, D., Ge, B., Wang, Z., Sun, Y., Chen, Y., Ji, D., Yang, T., Ma, Z., Cheng, N., Hao, J., & Yao, X. (2017). Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014. Environmental Pollution, 230, 963–973. https://doi.org/10.1016/j.envpol.2017.07.033

    Article  CAS  Google Scholar 

  • Yamasoe, H. A., Artaxo, P., Miguel, A. H., & Allen, A. G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, 34, 1641–1653.

    Article  CAS  Google Scholar 

  • Zhu, L., Chen, Y., Guo, L., & Wang, F. (2013). Estimate of dry deposition fluxes of nutrients over the East China Sea: The implication of aerosol ammonium to non-sea-salt sulfate ratio to nutrient deposition of coastal oceans. Atmospheric Environment, 69, 131–138. https://doi.org/10.1016/j.atmosenv.2012.12.028

    Article  CAS  Google Scholar 

  • Zou, C., Zhang, Y., Gao, Y., Mao, X., Huang, H., & Tan, Y. (2020). Characteristics, distribution, and sources of particulate carbon in rainfall collected by a sequential sampler in Nanchang. China Atmospheric Environment, 235, 117619. https://doi.org/10.1016/j.atmosenv.2020.117619

    Article  CAS  Google Scholar 

  • Zunckel, M., Saizar, C., & Zarauz, J. (2003). Rainwater composition in northeast Uruguay. Atmospheric Environment, 37, 1601–1611. https://doi.org/10.1016/S1352-2310(03)00007-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Carnelos, D. A.: writing — original draft preparation, formal analysis, investigation. Jobbagy, E.: methodology, conceptualization. Piñeiro, G.: conceptualization, visualization, supervision.

Corresponding author

Correspondence to D. A. Carnelos.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnelos, D.A., Jobbagy, E. & Piñeiro, G. Rainout and Washout Contributions to Wet Atmospheric Deposition in Southern South America. Water Air Soil Pollut 235, 187 (2024). https://doi.org/10.1007/s11270-024-06991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06991-z

Keywords

Navigation