Skip to main content

Advertisement

Log in

Effect of Sulfolane Demixing and Sorption on its Migration Through Model Fractured and Porous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Sulfolane is an emerging contaminant, miscible in pure water. The correlation between mixing behavior and transport of sulfolane with sulfate and chloride salts is not fully understood. Sulfate salts (e.g., Na2SO4) decrease the solubility of sulfolane in water. Specifically, solutions with 30wt% sulfolane separated into bulk phases with 130 g/kg Na2SO4 (2.4 mol% Na2SO4 relative to the total mixture) and emulsions formed with lower concentrations of Na2SO4 (41 g/kg or 0.7 mol% Na2SO4 relative to the total mixture). This is not observed with chlorides at these same concentrations. Na2SO4 enhanced sulfolane sorption onto montmorillonite clay, with 0.2 g sulfolane sorbed/g clay at high Na2SO4 concentrations (40.7 g Na2SO4/kg solution). As a result, Na2SO4 delayed sulfolane migration in model clayey fractures, compared to pure water. Sulfolane and co-contaminants such as toluene reciprocally influence their miscibility in water. Sulfolane emulsified toluene in pure water, while Na2SO4 supressed emulsification. In turn, sulfolane partitioned in toluene, and Na2SO4 enhanced this behavior by decreasing sulfolane miscibility in water. In flow tests conducted with 0.7 mol% Na2SO4 and 30wt% sulfolane (relative to water), the sulfolane concentration at the outlet is lower than that at the inlet for up to 80% of the total eluted volume. Therefore, in model sandy aquifers, the vertical migration of sulfolane was delayed with Na2SO4 and toluene, which floated on water and was trapped in soil pores due to capillary forces. Chloride salts had a less significant effect on toluene solubility in water and on its migration through model porous media.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request to the authors.

References

  • Bartokova, B., Marangoni, A. G., Laredo, T., & Pensini, E. (2023a). Phase behavior of sulfolane: Potential implications for transport in groundwater. Colloids and Surfaces A, 677, 132451.

    Article  CAS  Google Scholar 

  • Bartokova, B., Marangoni, A. G., Laredo, T., & Pensini, E. (2023b). Role of Hydrogen Bonding on Solvent Separation Using Amphiphilic Sorbitan Ester. Colloids and Surfaces C, 1, 100004.

  • Chang, S. H., Wu, C. F., Yang, C. F., & Lin, C. W. (2021). Evaluation use of bioaugmentation and biostimulation to improve degradation of sulfolane in artificial groundwater. Chemosphere, 263, 127919.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S. H., Lin, C. W., Cheng, Y. S., & Liu, S. H. (2023). Effects of biodegradation, biotoxicity and microbial community on biostimulation of sulfolane. Chemosphere, 319, 138047.

    Article  PubMed  CAS  Google Scholar 

  • Darko, E., & Thurbide, K. B. (2022). Sulfolane as a novel stationary phase for analytical separations by gas chromatography. Analytica Chimica Acta, 1189, 339254.

    Article  PubMed  CAS  Google Scholar 

  • Dinh, M., Hakimabadi, S. G., & Pham, A. L. T. (2020). Treatment of sulfolane in groundwater: A critical review. Journal of Environmental Management, 263, 110385.

    Article  PubMed  CAS  Google Scholar 

  • Doucette, W. J., Chard, J. K., Moore, B. J., Staudt, W. J., & Headley, J. V. (2005). Uptake of sulfolane and diisopropanolamine (DIPA) by cattails (Typha latifolia). Microchemical Journal, 81, 41–49.

    Article  CAS  Google Scholar 

  • Earnden, L., Marangoni, A. G., Gregori, S., Paschos, A., & Pensini, E. (2021). Zein-bonded graphene and biosurfactants enable the electrokinetic clean-up of hydrocarbons. Langmuir, 37, 11153–11169.

    Article  PubMed  CAS  Google Scholar 

  • Earnden, L., Marangoni, A. G., Laredo, T., Stobbs, J., & Pensini, E. (2022a). Self-Assembled glycerol monooleate demixes miscible liquids through selective hydrogen bonding to water. Journal of Molecular Liquids, 367, 120551.

    Article  CAS  Google Scholar 

  • Earnden, L., Marangoni, A. G., Laredo, T., Stobbs, J., & Pensini, E. (2022b). Mechanisms of separation between tetrahydrofuran and water using hydroxystearic acid. Physics of Fluids, 34, 097119.

    Article  ADS  CAS  Google Scholar 

  • Gleick, P. H., & Cooley, H. (2021). Freshwater scarcity. Annual Review of Environment and Resources, 46, 319–348.

    Article  Google Scholar 

  • Gorelick, S. M., & Zheng, C. (2015). Global change and the groundwater management challenge. Water Resources Research, 51, 3031–3051.

    Article  ADS  Google Scholar 

  • Gue, A. E., Mayer, B., & Grasby, S. E. (2015). Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada. Applied Geochemistry, 61, 132–145.

    Article  ADS  CAS  Google Scholar 

  • Guo, L., & Lee, H. K. (2011). Low-density solvent-based solvent demulsification dispersive liquid–liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples. Journal of Chromatography A, 1218, 5040–5046.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, M. J., Cherry, J. A., & Wallick, E. I. (1986). Origin and distribution of sulfate in a fractured till in southern Alberta, Canada. Water Resources Research, 22, 45–61.

    Article  ADS  CAS  Google Scholar 

  • Izadifard, M., Achari, G., & Langford, C. H. (2018). Mineralization of sulfolane in aqueous solutions by Ozone/CaO2 and Ozone/CaO with potential for field application. Chemosphere, 197, 535–540.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Jeon, J., Kannan, K., Lim, B. J., An, K. G., & Kim, S. D. (2011). Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles. Journal of Environmental Monitoring13(6), 1803–1810.

  • Jeong, S. W., & Corapcioglu, M. Y. (2005). Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium. Journal of Hazardous Materials, 126, 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K., Ok, Y. S., & Chang, S. X. (2011). Sulfate adsorption properties of acid-sensitive soils in the Athabasca oil sands region in Alberta, Canada. Chemosphere, 84, 457–463.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Kasanke, C. P., & Leigh, M. B. (2017). Factors limiting sulfolane biodegradation in contaminated subarctic aquifer substrate. PLoS ONE, 12, e0181462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, M. F., Yu, L., & Achari, G. (2020). Field evaluation of a pressurized ozone treatment system to degrade sulfolane in contaminated groundwaters. Journal of Environmental Chemical Engineering, 8, 104037.

    Article  CAS  Google Scholar 

  • Kim, C. G., Clarke, W. P., & Lockington, D. (2000). Determination of retardation coefficients of sulfolane and thiolane on soils by Kow-Koc and solubility parameter, batch and column experiments. Environmental Geology, 39, 741–749.

    Article  CAS  Google Scholar 

  • Lamont, K., Marangoni, A., & Pensini, E. (2020). ‘Emulsion locks’ for the containment of hydrocarbons during surfactant flushing. Journal of Environmental Sciences90, 98–109

  • Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021a). Sources and consequences of groundwater contamination. Archives of Environmental Contamination and Toxicology, 80, 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, M., Zhuang, B., Lu, Y., An, L., & Wang, Z. G. (2021b). Salt-induced liquid–liquid phase separation: Combined experimental and theoretical investigation of water–acetonitrile–salt mixtures. Journal of the American Chemical Society, 143, 773–784.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W. C., Tsai, T. H., Lin, T. Y., & Yang, C. H. (2008). Influence of the temperature on the liquid–liquid equilibria of heptane+ toluene+ sulfolane and heptane+ m-xylene+ sulfolane. Journal of Chemical & Engineering Data, 53, 760–764.

    Article  CAS  Google Scholar 

  • Lin, C. W., Liu, S. H., Wu, C. F., & Chang, S. H. (2021). Critical factors for enhancing the bioremediation of a toxic pollutant at high concentrations in groundwater: Toxicity evaluation, degrader tolerance, and microbial community. Journal of Environmental Management, 277, 111487.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Wu, L., & Letey, J. (2002). Effects of soil and water properties on anionic polyacrylamide sorption. Soil Science Society of America Journal, 66, 578–584.

    Article  ADS  CAS  Google Scholar 

  • Luther, S. M., Dudas, M. J., & Fedorak, P. M. (1998). Sorption of sulfolane and diisopropanolamine by soils, clays and aquifer materials. Journal of Contaminant Hydrology, 32, 159–176.

    Article  ADS  CAS  Google Scholar 

  • Marshall, T., Gravelle, A., Marangoni, A. G., Elsayed, A., & Pensini, E. (2020). Zein for hydrocarbon remediation: Emulsifier, trapping agent, or both? Colloids and Surfaces A, 589, 124456.

    Article  CAS  Google Scholar 

  • Marshall, T., Earnden, L., Marangoni, A. G., Laredo, T., & Pensini, E. (2022a). Cubic mesophases of self-assembled amphiphiles separate miscible solvents. Colloids and Surfaces A, 650, 129548.

    Article  CAS  Google Scholar 

  • Marshall, T., Marangoni, A. G., Laredo, T., Al-Abdul-Wahid, M. S., & Pensini, E. (2022b). Mechanisms of solvent separation using sugars and sugar alcohols. Colloids and Surfaces A, 642, 128707.

    Article  CAS  Google Scholar 

  • Médout-Marère, V. (2000). A simple experimental way of measuring the Hamaker constant A11 of divided solids by immersion calorimetry in apolar liquids. Journal of Colloid and Interface Science, 228, 434–437.

    Article  ADS  PubMed  Google Scholar 

  • Mohsen-Nia, M., & Paikar, I. (2007). (Liquid+ liquid) equilibria of ternary and quaternary systems containing n-hexane, toluene, m-xylene, propanol, sulfolane, and water at T= 303.15 K. The Journal of Chemical Thermodynamics, 39, 1085–1089.

    Article  CAS  Google Scholar 

  • Pecini, E. M., & Avena, M. J. (2013). Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite. Langmuir, 29, 14926–14934.

    Article  PubMed  CAS  Google Scholar 

  • Pensini, E., Yip, C. M., O’Carroll, D. M., & Sleep, B. E. (2012a). effect of water chemistry and aging on iron- mica interaction forces: Implications for iron particle transport. Langmuir, 28, 10453–10463.

    Article  PubMed  CAS  Google Scholar 

  • Pensini, E., Sleep, B. E., Yip, C. M., & O’Carroll, D. (2012b). Forces of interactions between bare and polymer-coated iron and silica: Effect of pH, ionic strength, and humic acids. Environmental Science & Technology, 46, 13401–13408.

    Article  ADS  CAS  Google Scholar 

  • Pensini, E., Sleep, B. E., Yip, C. M., & O’Carroll, D. (2013). Forces of interactions between iron and aluminum silicates: Effect of water chemistry and polymer coatings. Journal of Colloid and Interface Science, 411, 8–15.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Pensini, E., Tchoukov, P., Yang, F., & Xu, Z. (2018). Effect of humic acids on bitumen films at the oil-water interface and on emulsion stability: Potential implications for groundwater remediation. Colloids and Surfaces A, 544, 53–59.

    Article  CAS  Google Scholar 

  • Stüber, F., Font, J., Eftaxias, A., Paradowska, M., Suarez, M. E., Fortuny, A., Bengoa, C., & Fabregat, A. (2005). Chemical wet oxidation for the abatement of refractory non-biodegradable organic wastewater pollutants. Process Safety and Environmental Protection, 83, 371–380.

    Article  Google Scholar 

  • Tabata, M., Kumamoto, M., & Nishimoto, J. (1994). Chemical properties of water-miscible solvents separated by salting-out and their application to solvent extraction. Analytical Sciences, 10, 383–388.

    Article  CAS  Google Scholar 

  • Valente, I. M., Gonçalves, L. M., & Rodrigues, J. A. (2013). Another glimpse over the salting-out assisted liquid–liquid extraction in acetonitrile/water mixtures. Journal of Chromatography A, 1308, 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Wong, Y. J., Shimizu, Y., He, K., & Nik Sulaiman, N. M. (2020). Comparison among different ASEAN water quality indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia. Environmental Monitoring and Assessment, 192, 1–16.

    Article  Google Scholar 

  • Wong, Y. J., Shimizu, Y., Kamiya, A., Maneechot, L., Bharambe, K. P., Fong, C. S., & Nik Sulaiman, N. M. (2021). Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia. Environmental Monitoring and Assessment, 193, 438.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. F., Liu, S. H., Su, Y. M., Chen, Y. R., Lin, C. W., & Lin, K. L. (2019). Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater: Determination of bioremediation parameters. Science of the Total Environment, 648, 811–818.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Yu, L., Khan, M. F., & Achari, G. (2021). A review on physiochemical treatment of sulfolane in aqueous media. Journal of Environmental Chemical Engineering, 9, 105691.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (provided through an NSERC Discovery grant, awarded to Dr. Erica Pensini, PIN 537871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Pensini.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartokova, B., Marangoni, A.G. & Pensini, E. Effect of Sulfolane Demixing and Sorption on its Migration Through Model Fractured and Porous Media. Water Air Soil Pollut 235, 97 (2024). https://doi.org/10.1007/s11270-024-06916-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06916-w

Keywords

Navigation