Skip to main content

Advertisement

Log in

A New Sunlight Active Photocatalyst Based on CuO-TiO2-Clay Composite for Wastewater Remediation: Mechanistic Insights and Degradation Optimization

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this wok, a new CuO-TiO2-clay composite was synthesized by the sol–gel method and explored as a photocatalyst for wastewater remediation. The synthesized material was characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and Fourier Transformer InfraRed (FTIR). The photocatalytic activity of the composite was tested on tartrazine dye (TARTZ) removal. Particular emphasis was focused on the effect of the key operating parameters such as photocatalyst dose, pH, light intensity, and initial concentration of dye. The optimization of three simultaneous parameters, namely methylene blue concentration (MB; pollutant in competition with TARTZ), NaCl concentration, and irradiation time, was examined via the response surface methodology (RSM). The CuO-TiO2-clay composite showed the best photocatalytic performance with 62.50% of photodegradation yield of TARTZ in visible light irradiation compared to 19.38% and 43.78% for pure TiO2 and TiO2-clay, respectively. This performance reached to 100% in sunlight source during the same time. The optimal conditions provided by the response surface methodology (RSM) were 180 min for irradiation time and 3.6 mg/L for MB concentration. After 120 min, 11.35% of TARTZ mineralization was obtained. The scavenger study revealed the involvement of OH· and h+ species, but especially \({{\text{O}}}_{2}^{-.}\) as the main responsible for the photodegradation of the TARTZ. The current study highlights the potential of CuO-TiO2-clay composite as efficient photocatalytic systems for degrading hazardous organic pollutants in water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available on request.

References

  • Abbad, S., Guergouri, K., Gazaout, S., Djebabra, S., Zertal, A., Barille, R., & Zaabat, M. (2020). Effect of silver doping on the photocatalytic activity of TiO nanopowders synthesized by the sol-gel route. Journal of Environmental Chemical Engineering, 8(3), 103718. https://doi.org/10.1016/j.jece.2020.103718

    Article  CAS  Google Scholar 

  • Abd-Ellatif, W. R., Mahmoud, N. G., Hashem, A. A., El-Aiashy, M. K., Ezzo, E. M., & Mahmoud, S. A. (2022). Efficient photodegradation of E124 dye using two-dimensional Zn-Co LDH: Kinetic and thermodynamic studies. Environmental Technology and Innovation, 27, 102393. https://doi.org/10.1016/j.eti.2022.102393

    Article  CAS  Google Scholar 

  • Ahmad, S., & Yasin, A. (2020). Photocatalytic degradation of deltamethrin by using Cu/TiO2 /bentonite composite. Arabian Journal of Chemistry, 13(11), 8481–8488. https://doi.org/10.1016/j.arabjc.2020.07.019

    Article  CAS  Google Scholar 

  • Akkari, M., Aranda, P., Mayoral, A., García-hernández, M., Haj, A. B., & Ruiz-hitzky, E. (2017). Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. Journal of Hazardous Materials, 340, 281–290. https://doi.org/10.1016/j.jhazmat.2017.06.067

    Article  PubMed  CAS  Google Scholar 

  • Altin, I. (2022). CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A. Journal of Molecular Structure, 1252, 132199. https://doi.org/10.1016/j.molstruc.2021.132199

    Article  CAS  Google Scholar 

  • Aoudjit, L., Martins, P. M., Madjene, F., Petrovykh, D. Y., & Lanceros-Mendez, S. (2018). Photocatalytic reusable membranes for the effective degradation of tartrazine with a solar photoreactor. Journal of Hazardous Materials, 344, 408–416. https://doi.org/10.1016/j.jhazmat.2017.10.053

    Article  PubMed  CAS  Google Scholar 

  • Bahdaouia, A., Amara, S., Adnane, L., Columbus, S., Daoudi, K., & Mahieddine, A. (2022). Synthesis, characterization and photoelectrochemical properties of novel Cu (Cr1-x, Alx)2O4 spinel oxides for enhanced photodegradation of organic dyes under UV light. International Journal of Hydrogen Energy, 47(15), 9301–9318. https://doi.org/10.1016/j.ijhydene.2022.01.016

    Article  CAS  Google Scholar 

  • Bahrudin, N. N., Nawi, M. A., & Zainal, Z. (2020). Insight into the synergistic photocatalytic-adsorptive removal of methyl orange dye using TiO2/chitosan based photocatalyst. International Journal of Biological Macromolecules, 165, 2462–2474. https://doi.org/10.1016/j.ijbiomac.2020.10.148

    Article  PubMed  CAS  Google Scholar 

  • Balakrishnan, A., & Chinthala, M. (2022). Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere, 297, 134190. https://doi.org/10.1016/j.chemosphere.2022.134190

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, S., & Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005

    Article  CAS  Google Scholar 

  • Baraka, S., Bouearan, K., Caner, L., Fontaine, C., Epron, F., Brahmi, R., & Bion, N. (2021). Catalytic performances of natural Nibearing clay minerals for production of syngas from dry reforming of methane. Journal of CO Utilization, 52, 101696. https://doi.org/10.1016/j.jcou.2021.101696

    Article  CAS  Google Scholar 

  • Barzegara, M. H., Sabzehmeidani, M. M., Ghaedi, M., Madadi, V., Moradi, Z., Roy, V. A. L., & Heidari, H. (2021). S-scheme heterojunction g-C3N4/TiO2 with enhanced photocatalytic activity for degradation of a binary mixture of cationic dyes using solar parabolic trough reactor. Chemical Engineering Research and Design, 174, 307–318. https://doi.org/10.1016/j.cherd.2021.08.015

    Article  CAS  Google Scholar 

  • Bayan, E. M., Lupeiko, T. G., Pustovaya, L. E., Volkova, M. G., Butova, V. V., & Guda, A. A. (2020). Zn-F co-doped TiO2 nanomaterials : Synthesis, structure and photocatalytic activity. Journal of Alloys and Compounds, 822, 153662. https://doi.org/10.1016/j.jallcom.2020.153662

    Article  CAS  Google Scholar 

  • Bouallouche, R., Dalhatou, S., Kane, A., Nasrallah, N., Hachemi, M., Amrane, A., & Assadi, A. A. (2021). Reconsideration of the contribution of photogenerated ROS in methyl orange degradation on TiO2, Cu2O, WO3, and Bi2O3 under low-intensity simulated solar light: Mechanistic understanding of photocatalytic activity. Euro-Mediterranean Journal for Environmental Integration, 6(3), 1–10. https://doi.org/10.1007/s41207-021-00276-1

    Article  Google Scholar 

  • Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., Liu, H., Liu, Y., & Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 268, 121725. https://doi.org/10.1016/j.jclepro.2020.121725

    Article  CAS  Google Scholar 

  • Chen, M., Chen, J., Chen, C., Zhang, C., & He, H. (2022). Distinct photocatalytic charges separation pathway on CuOx modified rutile and anatase TiO2 under visible light. Applied Catalysis B: Environmental, 300, 120735. https://doi.org/10.1016/j.apcatb.2021.120735

    Article  CAS  Google Scholar 

  • Chinnathambi, A. (2022). Synthesis and characterization of spinel FeV2O4 coupled ZnO nanoplates for boosted white light photocatalysis and antibacterial applications. Journal of Alloys and Compounds, 890, 161742. https://doi.org/10.1016/j.jallcom.2021.161742

    Article  CAS  Google Scholar 

  • Chkirida, S., Zari, N., Achour, R., Hassoune, H., Lachehab, A., & Bouhfid, R. (2021). Highly synergic adsorption/photocatalytic efficiency of alginate/bentonite impregnated TiO beads for wastewater treatment. Journal of Photochemistry & Photobiology, A: Chemistry, 412, 113215. https://doi.org/10.1016/j.jphotochem.2021.113215

    Article  CAS  Google Scholar 

  • Costamagna, M., Ciacci, L., Cristina, M., & Calza, P. (2020). Combining the highest degradation efficiency with the lowest environmental impact in zinc oxide based photocatalytic systems. Journal of Cleaner Production, 252, 119762. https://doi.org/10.1016/j.jclepro.2019.119762

    Article  CAS  Google Scholar 

  • Cui, Y., Huang, X., Wang, T., Jia, L., Nie, Q., Tan, Z., & Yu, H. (2022). Graphene quantum dots/carbon nitride heterojunction with enhanced visible-light driven photocatalysis of nitric oxide: An experimental and DFT study. Carbon, 191, 502–514. https://doi.org/10.1016/j.carbon.2022.02.004

    Article  CAS  Google Scholar 

  • Dalhatou, S., Pétrier, C., Laminsi, S., & Baup, S. (2015). Sonochemical removal of naphthol blue black azo dye: Influence of parameters and effect of mineral ions. International Journal of Environmental Science and Technology, 12(1), 35–44. https://doi.org/10.1007/s13762-013-0432-8

    Article  CAS  Google Scholar 

  • Dalhatou, S., Sali, M., Tetteh, S., Boubakari, A., Talami, B., Zeghioud, H., Kane, A., El Jery, A., Assadi, A. A., & Obada, D. O. (2022). Sorbent and photocatalytic potentials of local clays for the removal of organic xenobiotic: case of crystal violet. Catalysts, 12(8), 899. https://doi.org/10.3390/catal12080899

    Article  CAS  Google Scholar 

  • Dallabona, I. D., Mathias, A. L., & Jorge, R. M. M. (2021). A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127159. https://doi.org/10.1016/j.colsurfa.2021.127159

    Article  CAS  Google Scholar 

  • Dao, T. B. T., Ha, T. T. L., Do Nguyen, T., Le, H. N., Ha-Thuc, C. N., Nguyen, T. M. L., Perre, P., & Nguyen, D. M. (2021). Effectiveness of photocatalysis of MMT-supported TiO2 and TiO2 nanotubes for rhodamine B degradation. Chemosphere, 280, 130802. https://doi.org/10.1016/j.chemosphere.2021.130802

    Article  PubMed  CAS  Google Scholar 

  • Das, A., Adak, M. K., Mahata, N., & Biswas, B. (2021). Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. Journal of Molecular Liquids, 338, 116479. https://doi.org/10.1016/j.molliq.2021.116479

    Article  CAS  Google Scholar 

  • Dlamini, M. C., Maubane-Nkadimeng, M. S., & Moma, J. A. (2021). The use of TiO /clay heterostructures in the photocatalytic remediation of water containing organic pollutants: A review. Journal of Environmental Chemical Engineering, 9(6), 106546. https://doi.org/10.1016/j.jece.2021.106546

    Article  CAS  Google Scholar 

  • El Gaidoumi, A., Rodríguez, J. M. D., Melián, E. P., González-Díaz, O. M., Santos, J. A. N., El Bali, B., & Kherbeche, A. (2019). Synthesis of sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity. Surfaces and Interfaces, 14, 19–25. https://doi.org/10.1016/j.surfin.2018.10.003

    Article  CAS  Google Scholar 

  • El Gaidoumi, A., Loqman, A., Zouheir, M., Tanji, K., Mertah, O., Dra, A., El Bali, B., & Kherbeche, A. (2021). Sol–gel fluorinated TiO2–clay nanocomposite: study of fluor-titanium interaction on the photodegradation of phenol. Research on Chemical Intermediates, 47, 5203–5228. https://doi.org/10.1007/s11164-021-04573-w

    Article  CAS  Google Scholar 

  • El-naggar, M. E., Wassel, A. R., & Shoueir, K. (2021). Visible-light driven photocatalytic effectiveness for solid-state synthesis of ZnO/natural clay/TiO2 nanoarchitectures towards complete decolorization of methylene blue from aqueous solution. Environmental Nanotechnology, Monitoring & Management, 15, 100425. https://doi.org/10.1016/j.enmm.2020.100425

    Article  CAS  Google Scholar 

  • Fawzi, O., Khasawneh, S., Palaniandy, P., Ahmadipour, M., Mohammadi, H., Razak, M., & Hamdan, B. (2021). Removal of acetaminophen using Fe2O3-TiO2 nanocomposites by photocatalysis under simulated solar irradiation : Optimization study. Journal of Environmental Chemical Engineering, 9(1), 104921. https://doi.org/10.1016/j.jece.2020.104921

    Article  CAS  Google Scholar 

  • Fiorito, S., Epifano, F., Palumbo, L., Collevecchio, C., Bastianini, M., Cardellini, F., Spogli, R., & Genovese, S. (2022). Efficient removal of tartrazine from aqueous solutions by solid sorbents. Separation and Purification Technology, 290, 120910. https://doi.org/10.1016/j.seppur.2022.120910

    Article  CAS  Google Scholar 

  • França, D. B., Trigueiro, P., Silva Filho, E. C., Fonseca, M. G., & Jaber, M. (2020). Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere, 242, 125109. https://doi.org/10.1016/j.chemosphere.2019.125109

    Article  PubMed  CAS  Google Scholar 

  • Francisco, M. S. P., Mastelaro, V. R., Nascente, P. A. P., & Florentino, A. O. (2001). Activity and characterization by XPS, HRTEM, Raman spectroscopy, and bet surface area of CuO/CeO -TiO catalysts. Journal of Physical Chemistry B, 105(43), 10515–10522. https://doi.org/10.1021/jp0109675

    Article  CAS  Google Scholar 

  • Gnanasekaran, L., Pachaiappan, R., Kumar, P. S., Hoang, T. K. A., Rajendran, S., Durgalakshmi, D., Soto-Moscoso, M., Cornejo-Ponce, L., & Gracia, F. (2021). Visible light driven exotic p(CuO)-n(TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity. Environmental Pollution, 287, 117304. https://doi.org/10.1016/j.envpol.2021.117304

    Article  PubMed  CAS  Google Scholar 

  • Gómez, M., Arancibia, V., Rojas, C., & Nagles, E. (2012). Adsorptive stripping voltammetric determination of tartrazine and sunset yellow in gelatins and soft drink powder in the presence of cetylpyridinium bromide. International Journal of Electrochemical Science, 7(8), 7493–7502. https://doi.org/10.1016/s1452-3981(23)15799-3

    Article  Google Scholar 

  • Haffane, S., Achak, O., & Chafik, T. (2016). Investigation of the effect of purification and modification of a local clay on its structural and textural properties. Journal of Materials and Environmental Science, 7(2), 525–530.

    CAS  Google Scholar 

  • Heng, Z. W., Chong, W. C., Pang, Y. L., Sim, L. C., & Koo, C. H. (2022). Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation. Chinese Journal of Chemical Engineering, 51, 21–34. https://doi.org/10.1016/j.cjche.2021.10.021

    Article  CAS  Google Scholar 

  • Htet, H., Li, Y., Ghasemi, J. B., Wang, J., & Zhang, G. (2022). Enhanced visible-light-driven photocatalysis of in-situ reduced of bismuth on BiOCl nanosheets and montmorillonite loading : Synergistic effect and mechanism insight. Chemosphere, 304, 135354. https://doi.org/10.1016/j.chemosphere.2022.135354

    Article  CAS  Google Scholar 

  • Ichipi, E. O., Tichapondwa, S. M., & Chirwa, E. M. N. (2022). Plasmonic effect and bandgap tailoring of Ag/Ag2S doped on ZnO nanocomposites for enhanced visible-light photocatalysis. Advanced Powder Technology, 33(6), 103596. https://doi.org/10.1016/j.apt.2022.103596

    Article  CAS  Google Scholar 

  • Jahdi, M., Mishra, S. B., Nxumalo, E. N., Mhlanga, S. D., & Mishra, K. (2020). Synergistic effects of sodium fluoride (NaF) on the crystallinity and band gap of Fe-doped TiO developed via microwave-assisted hydrothermal treatment. Optical Materials, 104, 109844. https://doi.org/10.1016/j.optmat.2020.109844

    Article  CAS  Google Scholar 

  • Jarvin, M., Kumar, S. A., Rosaline, D. R., Foletto, E. L., Dotto, G. L., & Inbanathan, S. S. R. (2022). Remarkable sunlight-driven photocatalytic performance of Ag-doped ZnO nanoparticles prepared by green synthesis for degradation of emerging pollutants in water. Environmental Science and Pollution Research, 29(38), 57330–57344. https://doi.org/10.1007/s11356-022-19796-6

    Article  PubMed  CAS  Google Scholar 

  • Kader, S., Al-Mamun, M. R., Suhan, M. B. K., Shuchi, S. B., & Islam, M. S. (2022). Enhanced photodegradation of methyl orange dye under UV irradiation using MoO3 and Ag doped TiO2 photocatalysts. Environmental Technology and Innovation, 27, 102476. https://doi.org/10.1016/j.eti.2022.102476

    Article  CAS  Google Scholar 

  • Kane, A., Chafiq, L., Dalhatou, S., Bonnet, P., Nasr, M., Gaillard, N., Dikdim, J. M. D., Monier, G., Assadi, A. A., & Zeghioud, H. (2022). g-C3N4/TiO2S-scheme heterojunction photocatalyst with enhanced photocatalytic carbamazepine degradation and mineralization. Journal of Photochemistry and Photobiology A: Chemistry, 430, 113971.

    Article  CAS  Google Scholar 

  • Karim, A. V., Krishnan, S., & Shriwastav, A. (2022). An overview of heterogeneous photocatalysis for the degradation of organic compounds: A special emphasis on photocorrosion and reusability. Journal of the Indian Chemical Society, 99(6), 100480. https://doi.org/10.1016/j.jics.2022.100480

    Article  CAS  Google Scholar 

  • Karimi-Shamsabadi, M., & Behpour, M. (2021). Comparing photocatalytic activity consisting of Sb2S3 and Ag2S on the TiO2– SiO2/TiO2 nanotube arrays-support for improved visible-light-induced photocatalytic degradation of a binary mixture of basic blue 41 and basic red 46 dyes. International Journal of Hydrogen Energy, 46(53), 26989–27013. https://doi.org/10.1016/j.ijhydene.2021.05.199

    Article  CAS  Google Scholar 

  • Kaushik, B., Yadav, S., Rana, P., Solanki, K., Rawat, D., & Sharma, R. K. (2022). Precisely engineered type II ZnO-CuS based heterostructure: A visible light driven photocatalyst for efficient mineralization of organic dyes. Applied Surface Science, 590, 153053. https://doi.org/10.1016/j.apsusc.2022.153053

    Article  CAS  Google Scholar 

  • Khennaoui, B., Zehani, F., Malouki, M. A., Menacer, R., & López, M. C. (2020). Chemical and physical characterization of a natural clay and its use as photocatalyst for the degradation of the methabenzthiazuron herbicide in water. Optik, 219, 16502. https://doi.org/10.1016/j.ijleo.2020.165024

    Article  CAS  Google Scholar 

  • Khosravani Goshtasb, Z., Mehdi Sabzehmeidani, M., Ghaedi, M., Madadi Avargani, V., & Moradi, Z. (2022). Magnetic Ag3PO4/Ag2CrO4/Fe/Fe3O4 quaternary composite for improved solar-driven zhotocatalytic degradation of cationic dyes under natural solar radiation. Journal of Photochemistry and Photobiology A: Chemistry, 428, 113856.

    Article  CAS  Google Scholar 

  • Kubiak, A., Bielan, Z., Kubacka, M., Gabała, E., Zgoła-Grześkowiak, A., Janczarek, M., Zalas, M., Zielińska-Jurek, A., Siwińska-Ciesielczyk, K., & Jesionowski, T. (2020). Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Applied Surface Science, 520, 146344. https://doi.org/10.1016/j.apsusc.2020.146344

    Article  CAS  Google Scholar 

  • Laysandra, L., Sari, M. W. M. K., Soetaredjo, F. E., Foe, K., Putro, J. N., Kurniawan, A., & Ismadji, S. (2017). Adsorption and photocatalytic performance of bentonite-titanium dioxide composites for methylene blue and rhodamine B decoloration. Heliyon, 3(12). https://doi.org/10.1016/j.heliyon.2017.e00488

  • Lei, W., Wang, H., Zhang, X., Yang, Z., & Kong, C. (2022). Cu2O-based binary and ternary photocatalysts for the degradation of organic dyes under visible light. Ceramics International, 48(2), 1757–1764. https://doi.org/10.1016/j.ceramint.2021.09.255

    Article  CAS  Google Scholar 

  • Li, C., Zhu, N., Yang, S., He, X., Zheng, S., Sun, Z., & Dionysiou, D. D. (2021). A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. Chemosphere, 273, 129723. https://doi.org/10.1016/j.chemosphere.2021.129723

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Peng, K., Chen, H., & Wang, Z. (2018). TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Scientific Reports, 8(1), 11663. https://doi.org/10.1038/s41598-018-29563-8

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Liu, X., Liu, Y., Lu, S., Guo, W., & Xi, B. (2018). Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chemical Engineering Journal, 350, 131–147. https://doi.org/10.1016/j.cej.2018.05.141

    Article  CAS  Google Scholar 

  • Luo, Y., Han, Y., Hua, Y., Xue, M., Yu, S., Zhang, L., Yin, Z., Li, X., Ma, X., Wu, H., Liu, T., Shen, Y., & Gao, B. (2022). Step scheme nickel-aluminium layered double hydroxides/biochar heterostructure photocatalyst for synergistic adsorption and photodegradation of tetracycline. Chemosphere, 309(P2), 136802. https://doi.org/10.1016/j.chemosphere.2022.136802

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., Lan, Y., Liu, X., Xue, M., Zhang, L., Yin, Z., He, X., Li, X., Yang, J., Hong, Z., Naushad, M., & Gao, B. (2023). Hydrochar effectively removes aqueous Cr(VI) through synergistic adsorption and photoreduction. Separation and Purification Technology, 317, 123926. https://doi.org/10.1016/j.seppur.2023.123926

    Article  CAS  Google Scholar 

  • Malika, M., & Sonawane, S. S. (2021). Statistical modelling for the ultrasonic photodegradation of Rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustainable Energy Technologies and Assessments, 44, 100980. https://doi.org/10.1016/j.seta.2020.100980

    Article  Google Scholar 

  • Mishra, A., Mehta, A., & Basu, S. (2018). Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review. Journal of Environmental Chemical Engineering, 6(5), 6088–6107. https://doi.org/10.1016/j.jece.2018.09.029

    Article  CAS  Google Scholar 

  • Mosleh, S., Rahimi, M. R., Ghaedi, M., Asfaram, A., Jannesar, R., & Sadeghfar, F. (2018). A rapid and efficient sonophotocatalytic process for degradation of pollutants: Statistical modeling and kinetics study. Journal of Molecular Liquids, 261, 291–302. https://doi.org/10.1016/j.molliq.2018.03.115

    Article  CAS  Google Scholar 

  • Muñoz-Flores, P., Poon, P. S., Ania, C. O., & Matos, J. (2022). Performance of a C-containing Cu-based photocatalyst for the degradation of tartrazine: Comparison of performance in a slurry and CPC photoreactor under artificial and natural solar light. Journal of Colloid and Interface Science, 623, 646–659. https://doi.org/10.1016/j.jcis.2022.05.042

    Article  PubMed  ADS  CAS  Google Scholar 

  • Najafi, H., Farajfaed, S., Zolgharnian, S., Heydar, S., Mirak, M., Asasian-kolur, N., & Sharifian, S. (2021). A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Safety and Environmental Protection, 147, 8–36. https://doi.org/10.1016/j.psep.2020.09.028

    Article  CAS  Google Scholar 

  • Nekooie, R., Shamspur, T., & Mostafavi, A. (2021). Novel CuO/TiO2/PANI nanocomposite : Preparation and photocatalytic investigation for chlorpyrifos degradation in water under visible light irradiation. Journal of Photochemistry & Photobiology, A: Chemistry, 407, 113038. https://doi.org/10.1016/j.jphotochem.2020.113038

    Article  CAS  Google Scholar 

  • Nguyen, D. T. C., Le, H. T. N., Nguyen, T. T., Nguyen, T. T. T., Bach, L. G., Nguyen, T. D., & Van Tran, T. (2021). Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. Journal of Hazardous Materials, 420, 126586. https://doi.org/10.1016/j.jhazmat.2021.126586

    Article  PubMed  CAS  Google Scholar 

  • Ouassif, H., Moujahid, E. M., Lahkale, R., Sadik, R., Bouragba, F. Z., Sabbar, E., & Diouri, M. (2020). Zinc-aluminum layered double hydroxide: High efficient removal by adsorption of tartrazine dye from aqueous solution. Surfaces and Interfaces, 18, 100401. https://doi.org/10.1016/j.surfin.2019.100401

    Article  CAS  Google Scholar 

  • Papoulis, D., Panagiotaras, D., Tsigrou, P., Christoforidis, K. C., Petit, C., & Apostolopoulou, A. (2018). Halloysite and sepiolite – TiO2 nanocomposites : Synthesis characterization and photocatalytic activity in three aquatic wastes. Materials Science in Semiconductor Processing, 85, 1–8. https://doi.org/10.1016/j.mssp.2018.05.025

    Article  CAS  Google Scholar 

  • Qin, S., Xin, F., Liu, Y., Yin, X., & Ma, W. (2011). Photocatalytic reduction of CO in methanol to methyl formate over CuO-TiO composite catalysts. Journal of Colloid and Interface Science, 356(1), 257–261. https://doi.org/10.1016/j.jcis.2010.12.034

    Article  PubMed  ADS  CAS  Google Scholar 

  • Rahimnejad, S., Rahman Setayesh, S., & Gholami, M. R. (2008). A credible role of copper oxide on structure of nanocrystalline mesoporous titanium dioxide. Journal of the Iranian Chemical Society, 5(3), 367–374. https://doi.org/10.1007/BF03245990

    Article  CAS  Google Scholar 

  • Ranjbari, A., Demeestere, K., Verpoort, F., Kim, K. H., & Heynderickx, P. M. (2022). Novel kinetic modeling of thiabendazole removal by adsorption and photocatalysis on porous organic polymers: Effect of pH and visible light intensity. Chemical Engineering Journal, 431(P4), 133349. https://doi.org/10.1016/j.cej.2021.133349

    Article  CAS  Google Scholar 

  • Ratshiedana, R., Jola, O., Kumar, A., & Tawanda, A. (2021). Visible-light photocatalytic degradation of tartrazine using hydrothermal synthesized Ag-doped TiO nanoparticles. Journal of Water Process Engineering, 44, 102372. https://doi.org/10.1016/j.jwpe.2021.102372

    Article  Google Scholar 

  • Saber, A. N., Djellabi, R., Fellah, I., Abderrahim, N., & Bianchi, C. L. (2021). Synergistic sorption/photo-Fenton removal of typical substituted and parent polycyclic aromatic hydrocarbons from coking wastewater over CuO-Montmorillonite. Journal of Water Process Engineering, 44, 102377. https://doi.org/10.1016/j.jwpe.2021.102377

    Article  Google Scholar 

  • Sarkar Phyllis, A. K., Tortora, G., & Johnson, I. (2022). Photodegradation. The Fairchild Books Dictionary of Textiles. https://doi.org/10.5040/9781501365072.12105

  • Sassi, S., Trabelsi, K., El Jery, A., Abidi, M., Hajjaji, A., Khezami, L., Karrech, A., Gaidi, M., Soucase, B. M., & Bessais, B. (2023). Synergistic effect of CuxOy-NPs/TiO2-NTs heterostructure on the photodegradation of amido black staining. Optik, 272, 170234. https://doi.org/10.1016/j.ijleo.2022.170234

    Article  ADS  CAS  Google Scholar 

  • Shi, Y., Yang, Z., Wang, B., An, H., Chen, Z., & Cui, H. (2016). Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu2O–TiO2 composite. Applied Clay Science, 119, 311–320. https://doi.org/10.1016/j.clay.2015.10.033

    Article  ADS  CAS  Google Scholar 

  • Shi, Y., Yan, Z., Xu, Y., Tian, T., Zhang, J., Pang, J., Peng, X., Zhang, Q., Shao, M., Tan, W., Li, H., & Xiong, Q. (2020). Visiblelight- driven AgBr-TiO -Palygorskite photocatalyst with excellent photocatalytic activity for tetracycline hydrochloride. Journal of Cleaner Production, 277, 124021. https://doi.org/10.1016/j.jclepro.2020.124021

    Article  CAS  Google Scholar 

  • Sibhatu, A. K., Weldegebrieal, G. K., Sagadevan, S., Tran, N. N., & Hessel, V. (2022). Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere, 300, 134623. https://doi.org/10.1016/j.chemosphere.2022.134623

    Article  PubMed  CAS  Google Scholar 

  • Skinner, A. W., Dibernardo, A. M., Masud, A. M., Aich, N., & Pinto, A. H. (2020). Factorial design of experiments for optimization of photocatalytic degradation of tartrazine by zinc oxide (ZnO) nanorods with different aspect ratios. Journal of Environmental Chemical Engineering, 8(5), 104235. https://doi.org/10.1016/j.jece.2020.104235

    Article  CAS  Google Scholar 

  • Sohrabi, N., Mohammadi, R., Ghassemzadeh, H. R., & Heris, S. S. S. (2021). Equilibrium, kinetic and thermodynamic study of diazinon adsorption from water by clay/GO/Fe3O4: Modeling and optimization based on response surface methodology and artificial neural network. Journal of Molecular Liquids, 328, 115384. https://doi.org/10.1016/j.molliq.2021.115384

    Article  CAS  Google Scholar 

  • Sohrabnezhad, S., Moghaddam, M. J. M., & Salavatiyan, T. (2014). Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, 125, 73–78. https://doi.org/10.1016/j.saa.2014.01.080

    Article  PubMed  ADS  CAS  Google Scholar 

  • Soufi, A., Hajjaoui, H., Elmoubarki, R., Abdennouri, M., Qourzal, S., & Barka, N. (2022). Heterogeneous Fenton-like degradation of tartrazine using CuFe2O4 nanoparticles synthesized by sol-gel combustion. Applied Surface Science Advances, 9, 100251. https://doi.org/10.1016/j.apsadv.2022.100251

    Article  Google Scholar 

  • Souza, I. P. A. F., Crespo, L. H. S., Spessato, L., Melo, S. A. R., Martins, A. F., Cazetta, A. L., & Almeida, V. C. (2021). Optimization of thermal conditions of sol-gel method for synthesis of TiO using RSM and its influence on photodegradation of tartrazine yellow dye. Journal of Environmental Chemical Engineering, 9(2), 104753. https://doi.org/10.1016/j.jece.2020.104753

    Article  CAS  Google Scholar 

  • Szczepanik, B. (2017). Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites : A review. Applied Clay Science, 141, 227–239. https://doi.org/10.1016/j.clay.2017.02.029

    Article  CAS  Google Scholar 

  • Talwar, S., Verma, A. K., Sangal, V. K., & Štangar, U. L. (2020). Once through continuous flow removal of metronidazole by dual effect of photo-Fenton and photocatalysis in a compound parabolic concentrator at pilot plant scale. Chemical Engineering Journal, 388, 124184. https://doi.org/10.1016/j.cej.2020.124184

    Article  CAS  Google Scholar 

  • Tassalita, D., Ganibardia, K., Chekirb, N., Benhabilesa, O., Kasbadji, N., Issaadic, R., & Tipaza, W. (2019). Traitement des eaux de rejet de l ’ industrie du textile par couplage de procédés d ’ adsorption et de la photocatalyse. International Journal of Scientific Research Engineering Technology, 8, 31–37.

    Google Scholar 

  • Tian, J., Wu, S., Liu, S., & Zhang, W. (2022). Photothermal enhancement of highly efficient photocatalysis with bioinspired thermal radiation balance characteristics. Applied Surface Science, 592, 153304. https://doi.org/10.1016/j.apsusc.2022.153304

    Article  CAS  Google Scholar 

  • Ulhaq, I., Ahmad, W., Ahmad, I., Yaseen, M., & Ilyas, M. (2021). Engineering TiO2 supported CTAB modified bentonite for treatment of refinery wastewater through simultaneous photocatalytic oxidation and adsorption. Journal of Water Process Engineering, 43(July), 102239. https://doi.org/10.1016/j.jwpe.2021.102239

    Article  Google Scholar 

  • Uma, H. B., Kumar, M. S. V., & Ananda, S. (2022). Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. Journal of Molecular Structure, 1264, 133110. https://doi.org/10.1016/j.molstruc.2022.133110

    Article  CAS  Google Scholar 

  • Wang, Q., Rhimi, B., Wang, H., & Wang, C. (2020). Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. Applied Surface Science, 530, 1–12. https://doi.org/10.1016/j.apsusc.2020.147286

    Article  CAS  Google Scholar 

  • Wang, M., Liu, J., Xu, C., & Feng, L. (2022). Sonocatalysis and sono-photocatalysis in CaCu Ti O ceramics. Ceramics International, 48(8), 11338–11345. https://doi.org/10.1016/j.ceramint.2021.12.357

    Article  CAS  Google Scholar 

  • Wu, A., Wang, D., Wei, C., Zhang, X., Liu, Z., & Feng, P. (2019). A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Applied Clay Science, 183, 105352. https://doi.org/10.1016/j.clay.2019.105352

    Article  CAS  Google Scholar 

  • Xu, X., Sun, Y., Fan, Z., Zhao, D., Xiong, S., Zhang, B., Zhou, S., & Liu, G. (2018). Mechanisms for ·O2 and ·OH production on flowerlike BiVO4 photocatalysis based on electron spin resonance. Frontiers in Chemistry, 6, 1–12. https://doi.org/10.3389/fchem.2018.00064

    Article  CAS  Google Scholar 

  • Yahia, B., Faouzi, S., Ahmed, C., & Mohamed, T. (2022). A new hybrid process for Amoxicillin elimination by combination of adsorption and photocatalysis on (CuO/AC) under solar irradiation. Journal of Molecular Structure, 1261, 132769.

    Article  CAS  Google Scholar 

  • Yusuff, A. S., Olateju, I. I., & Adesina, O. A. (2019). TiO2/anthill clay as a heterogeneous catalyst for solar photocatalytic degradation of textile wastewater : Catalyst characterization and optimization studies. Materialia, 8, 100484. https://doi.org/10.1016/j.mtla.2019.100484

    Article  CAS  Google Scholar 

  • Zangeneh, H., Farhadian, M., & Zinatizadeh, A. A. (2020). N (Urea) and CN (L-Asparagine) doped TiO2 -CuO nanocomposites: Fabrication, characterization and photodegradation of direct red 16. Journal of Environmental Chemical Engineering, 8(1), 103639. https://doi.org/10.1016/j.jece.2019.103639

    Article  CAS  Google Scholar 

  • Zeghioud, H., Khellaf, N., Amrane, A., Djelal, H., Elfalleh, W., Assadi, A. A., & Rtimi, S. (2017). Photocatalytic performance of TiO impregnated polyester for the degradation of Reactive Green 12: Implications of the surface pretreatment and the microstructure. Journal of Photochemistry and Photobiology A: Chemistry, 346, 493–501. https://doi.org/10.1016/j.jphotochem.2017.07.005

    Article  CAS  Google Scholar 

  • Zeghioud, H., Assadi, A. A., Khellaf, N., Djelal, H., Amrane, A., & Rtimi, S. (2018). Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: Dynamics and mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 365, 94–102. https://doi.org/10.1016/j.jphotochem.2018.07.031

    Article  CAS  Google Scholar 

  • Zeghioud, H., Kamagate, M., Coulibaly, L. S., Rtimi, S., & Assadi, A. A. (2019). Photocatalytic degradation of binary and ternary mixtures of antibiotics: Reactive species investigation in pilot scale. Chemical Engineering Research and Design, 144, 300–309. https://doi.org/10.1016/j.cherd.2019.02.015

    Article  CAS  Google Scholar 

  • Zhou, F., Yan, C., Liang, T., Sun, Q., & Wang, H. (2018). Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2018.03.016

  • Zhang, S., Khan, A., Ali, N., Malik, S., Khan, H., Ali, N., & Bilal, M. (2022). Designing, characterization, and evaluation of chitosan-zinc selenide nanoparticles for visible-light-induced degradation of tartrazine and sunset yellow dyes. Environmental Research, 213, 113722. https://doi.org/10.1016/j.envres.2022.113722

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zyoud, A. H., Asaad, S., Zyoud, S. H., Zyoud, S. H., Helal, M. H., Qamhieh, N., Hajamohideen, A., & Hilal, H. S. (2020). Raw clay supported ZnO nanoparticles in photodegradation of 2-chlorophenol under direct solar radiations. Journal of Environmental Chemical Engineering, 8(5), 104227. https://doi.org/10.1016/j.jece.2020.104227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ivane LELIEVRE (UniLaSalle Rennes) for their technical help. The authors would also like to acknowledge the Erasmus+ International Credit Mobility for the Grant (Grant agreement number: 2019-1-FR01-KA107-060920) between the UniLaSalle Polytechnic Institute and the University of Maroua. This work was supported by the International Research Center “Innovation Transportation and Production Systems” of the I-SITE CAP 20-25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadou Dalhatou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A new CuO-TiO2-Clay composite was successfully synthesized by the sol-gel method and characterized.

• The synthesized CuO-TiO2-Clay composite shows higher photocatalytic activity under visible and solar light.

• The response surface methodology (RSM) provides the optimal conditions for TARTZ photodegradation.

• The reactive species such as HO, h+ , but especially O2-• free radicals were responsible for the TARTZ dye photodegradation.

• The reuse of CuO-TiO2-Clay showed a decrease in photocatalyst activity after three tests (a loss of degradation efficiency of around 14%).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talami, B., Zeghioud, H., Dalhatou, S. et al. A New Sunlight Active Photocatalyst Based on CuO-TiO2-Clay Composite for Wastewater Remediation: Mechanistic Insights and Degradation Optimization. Water Air Soil Pollut 235, 104 (2024). https://doi.org/10.1007/s11270-024-06884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06884-1

Keywords

Navigation