Skip to main content

Advertisement

Log in

From the Seafloor to the Surface: a Global Review of Gastropods as Bioindicators of Marine Microplastics

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microplastic (MP) pollution is a prevalent problem in marine ecosystems. These particles are often consumed unintentionally by marine organisms due to their small size, affecting their growth and development. Gastropods are an abundant, diverse group of molluscs which play important ecological roles and have significant economic value in the aquaculture industry. As marine gastropods have not yet been evaluated as bioindicators for MP pollution prior to this study, we hypothesise that these gastropods function as indicator species for marine MP pollution. We evaluated global literature available on the evidence of MPs in marine gastropods according to five gastropod subclasses. An average of 32.79 pieces of plastic/individual was found across all marine gastropods, with Caenogastropods having the greatest MP abundance (77.10 pieces/individual). Fibres (69%) and fragments (22%) were the main MP types observed across the gastropods, with Acrylic (22%), Polyamide (19%), and Polyethylene Terephthalate (13%) as the major polymer types. We also hypothesise that MPs are found in commercially available gastropods from local sources in Singapore. Hence, we examined the presence of MPs in the Caenogastropod Laevistrombus turturella from the coastal waters of Singapore and found an average of 273 pieces/individual, consisting of mostly fibres (35%) and film (31%). We also provide insight into the mechanism of MP uptake and release in gastropods, in relation to the effects of MP ingestion in these organisms. Gastropod feeding patterns were also found to impact MP abundance. Hence, we proposed gastropods to be essential indicators of MP pollution in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi, S., Turner, A., Hoseini, M., & Amiri, H. (2021). Microplastics in the Lut and Kavir Deserts, Iran. Environmental Science & Technology, 55(9), 5993–6000.

    CAS  Google Scholar 

  • Abidli, S., Lahbib, Y., & Trigui El Menif, N. (2019). Microplastics in commercial molluscs from the lagoon of Bizerte (Northern Tunisia). Marine Pollution Bulletin, 142, 243–252.

    CAS  Google Scholar 

  • Aranda, D. A., Oxenford, H. A., Medina, J., Delgado, G., Díaz, M. E., Samano, C., Escalante, V. C., Bardet, M., Mouret, E., & Bouchon, C. (2022). Widespread microplastic pollution across the Caribbean Sea confirmed using queen conch. Marine Pollution Bulletin, 178, 113582–113582.

    CAS  Google Scholar 

  • Barrett, J., Chase, Z., Zhang, J., Holl, M. M. B., Willis, K., Williams, A., Hardesty, B. D., & Wilcox, C. (2020). Microplastic pollution in deep-sea sediments from the Great Australian Bight. Frontiers in Marine Science, 7, 808.

  • Bellasi, A., Binda, G., Pozzi, A., Galafassi, S., Volta, P., & Bettinetti, R. (2020). Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments, 7(4), 30.

    Google Scholar 

  • BeNosr, K., & Fnfoe, J. (1999). Notes on the evolution and higher classification of the subclass Neritimorpha (Gastropoda) with the description of some new taxa. Geology Et Palaeontology, 33, 219–235.

    Google Scholar 

  • Bessa, F., Frias, J., Kögel, T., Lusher, A., Andrade, J., Antunes, J., Sobral, P., Pagter, E., Nash, R., O'Connor, I., Pedrotti, M.L., Keros, E., León, V., Tirelli, V., Suaria, G., Lopes, C., Raimundo, J., Caetano, M., Gago, J., Gerdts, G., (2019). Harmonized protocol for monitoring microplastics in biota. https://doi.org/10.13140/RG.2.2.28588.72321/1

  • Bouchet, P., Rocroi, J. P., Hausdorf, B., Kaim, A., Kano, Y., Nützel, A., Parkhaev, P., Schrödl, M., & Strong, E. E. (2017). Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia, 61(1), 1–526.

    Google Scholar 

  • Bour, A., Avio, C. G., Gorbi, S., Regoli, F., & Hylland, K. (2018). Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environmental Pollution, 243, 1217–1225.

    CAS  Google Scholar 

  • Boyd, J. R., Dutta, S., & Wei, J. (2020). Gastropods: A review of their role in marine food webs and fisheries. Reviews in Fish Biology and Fisheries, 30(4), 519–536.

    Google Scholar 

  • Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026–5031.

    CAS  Google Scholar 

  • Burgess, S. C., & Carney, R. S. (2020). The gastrointestinal tract in vetigastropods: Anatomy, function, and evolution. Integrative and Comparative Biology, 60(1), 79–92.

    Google Scholar 

  • Carpenter, E. J., & Smith, K. L., Jr. (1972). Plastics on the Sargasso Sea surface. Science, 175(4027), 1240–1241.

    CAS  Google Scholar 

  • Carriker, M. R. (1981). Feeding behavior and ecology of shallow water muricacean gastropods. Bulletin of Marine Science, 31(2), 327–341.

    Google Scholar 

  • Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution (Barking, Essex : 1987), 240, 387–395.

  • Choi, D. Y., Gredzens, C., & Shaver, D. J. (2021). Plastic ingestion by green turtles (Chelonia mydas) over 33 years along the coast of Texas, USA. Marine Pollution Bulletin, 173(Pt B), 113111–113111.

    CAS  Google Scholar 

  • Connor, V. M., & Quinn, J. F. (1984). Stimulation of food species growth by limpet mucus. Science, 225(4664), 843–844.

    CAS  Google Scholar 

  • Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068–7074.

    CAS  Google Scholar 

  • Cunha, T. J., & Giribet, G. (2019). A congruent topology for deep gastropod relationships. Proceedings of the Royal Society. B, Biological Sciences, 286(1898), 20182776–20182776.

  • Cunha, W. A., Freitas, Í. N., Gomes, L. A. S., Gonçalves, S. d. O., Montalvão, M. F., Ahmed, M. A. I., Gomes, A. R., Luz, T. M. d., Araújo, A. P. da C., & Malafaia, G. (2022). From carrion-eaters to plastic material plunderers: Toxicological impacts of plastic ingestion on black vultures, Coragyps atratus (Cathartiformes: Cathartidae). Journal of Hazardous Materials, 424(Pt D), 127753–127753

  • Curren, E., Leaw, C. P., Lim, P. T., & Leong, S. C. Y. (2020). Evidence of marine microplastics in commercially harvested seafood. Frontiers in Bioengineering and Biotechnology, 8, 562760.

    Google Scholar 

  • Davidson, K., & Dudas, S. E. (2016). Microplastic ingestion by wild and cultured Manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Archives of Environmental Contamination and Toxicology, 71, 147–156.

    CAS  Google Scholar 

  • Davies, M. S., & Beckwith, P. (1999). Role of mucus trails and trail-following in the behaviour and nutrition of the periwinkle Littorina littorea. Marine Ecology Progress Series, 179, 247–257.

    Google Scholar 

  • De Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of the total environment, 645, 1029–1039.

    Google Scholar 

  • Declerck, S. (1995). Feeding ecology of the estuarine intertidal gastropod Hydrobia ulvae: Evidence of microalgal selective feeding on a mudflat. Journal of Experimental Marine Biology and Ecology, 185(1), 63–78. https://doi.org/10.1016/0022-0981(94)00160-I

    Article  Google Scholar 

  • De-La-torre, G. E., Apaza-Vargas, D. M., & Santillán, L. (2020). Microplastic ingestion and feeding ecology in three intertidal mollusk species from Lima, Peru. Revista de Biologia Marina y Oceanografia. 55, 167–171. https://doi.org/10.22370/rbmo.2020.55.2.2502

  • Denny, M. (1980). The role of gastropod pedal mucus in locomotion. Nature, 285(5761), 160–161.

    Google Scholar 

  • Do Sul, J. A. I. (2021). Why it is important to analyze the chemical composition of microplastics in environmental samples. Marine Pollution Bulletin, 165, 112086.

    Google Scholar 

  • Doyle, D., Gammell, M., Frias, J., Griffin, G., & Nash, R. (2019). Low levels of microplastics recorded from the common periwinkle, Littorina littorea on the west coast of Ireland. Marine Pollution Bulletin, 149, 110645.

    CAS  Google Scholar 

  • Doyle, D., Frias, J., Nash, R., & Gammell, M. (2020). Current environmental microplastic levels do not alter emergence behaviour in the intertidal gastropod Littorina littorea. Marine Pollution Bulletin, 151, 110859.

    CAS  Google Scholar 

  • Dusaucy, J., Gateuille, D., Perrette, Y., & Naffrechoux, E. (2021). Microplastic pollution of worldwide lakes. Environmental Pollution, 1987(284), 117075–117075.

    Google Scholar 

  • Ehlers, S. M., Ellrich, J. A., & Koop, J. H. (2022). Microplastic load and polymer type composition in European rocky intertidal snails: Consistency across locations, wave exposure and years. Environmental Pollution, 292, 118280.

    CAS  Google Scholar 

  • Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE. https://doi.org/10.1371/journal.pone.0111913

    Article  Google Scholar 

  • FAO (2018). The state of world fisheries and aquaculture 2018 — Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. FAO, 184.

  • Fernández, B., & Albentosa, M. (2019). Insights into the uptake, elimination and accumulation of microplastics in mussel. Environmental Pollution, 249, 321–329.

    Google Scholar 

  • Foekema, E. M., De Gruijter, C., Mergia, M. T., Van Franeker, J. A., Murk, A. J., & Koelmans, A. A. (2013). Plastic in North Sea fish. Environmental Science & Technology, 47(15), 8818–8824.

    CAS  Google Scholar 

  • Fretter, V. (1990). The anatomy of some new archaeogastropod limpets (order Patellogastropoda, suborder Lepetopsina) from hydrothermal vents. Journal of Zoology, 222(4), 529–555.

    Google Scholar 

  • Fretter, V., & Graham, A. (1965). British prosobranch molluscs. The Ray Society.

    Google Scholar 

  • Frias, J. P., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147.

    CAS  Google Scholar 

  • Furfaro, G., D’Elia, M., Mariano, S., Trainito, E., Solca, M., Piraino, S., & Belmonte, G. (2022). SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet. Scientific Reports, 12(1), 10244–10244.

    CAS  Google Scholar 

  • Galindo, L. A., & Puente, A. I. (2019). Anatomy and histology of the digestive system of the marine gastropod Gibbula divaricata (Linnaeus, 1758) (Vetigastropoda: Trochidae). Journal of Morphology, 280(1), 25–37.

    Google Scholar 

  • Gall, S. C., & Thompson, R. C. (2015). The impact of debris on marine life. Marine Pollution Bulletin, 92(1–2), 170–179.

    CAS  Google Scholar 

  • Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1–12), 46–52.

    CAS  Google Scholar 

  • Gulizia, A. M., Brodie, E., Daumuller, R., Bloom, S. B., Corbett, T., Santana, M. M. F., Motti, C. A., & Vamvounis, G. (2022). Evaluating the effect of chemical digestion treatments on polystyrene microplastics: Recommended updates to chemical digestion protocols. Macromolecular Chemistry and Physics. https://doi.org/10.1002/macp.202100485

    Article  Google Scholar 

  • Gündoğdu, S., Eroldoğan, O. T., Evliyaoğlu, E., Turchini, G. M., & Wu, X. G. (2021). Fish out, plastic in: Global pattern of plastics in commercial fishmeal. Aquaculture, 534, 736316

  • Gurjar, U. R., Xavier, M., Nayak, B. B., Ramteke, K., Deshmukhe, G., Jaiswar, A. K., & Shukla, S. P. (2021). Microplastics in shrimps: A study from the trawling grounds of north eastern part of Arabian Sea. Environmental Science and Pollution Research, 28(35), 48494–48504.

    Google Scholar 

  • Gutow, L., Bartl, K., Saborowski, R., & Beermann, J. (2019). Gastropod pedal mucus retains microplastics and promotes the uptake of particles by marine periwinkles. Environmental Pollution, 246, 688–696.

    CAS  Google Scholar 

  • Hamra, A. J. A., & Patria, M. P. (2019). Microplastic in Gonggong snails (Laevistrombus turturella) and sediment of Bintan Island, Kepulauan Riau Province, Indonesia. AIP Conference Proceedings, 2202(1), 020079.

  • Hamzah, S. R., Anuar, S. T., Khalik, W. M. A. W. M., Kolandhasamy, P., & Ibrahim, Y. S. (2021). Ingestion of microplastics by the estuarine polychaete, Namalycastis sp. in the Setiu wetlands, Malaysia. Marine Pollution Bulletin, 170, 112617.

    CAS  Google Scholar 

  • Hanachi, A., Oudani, N., El Abidi, A., El Moumni, B., & El Moumni, M. (2019). Microplastic in farmed fish: A case study from Morocco. Environmental Science and Pollution Research, 26(19), 19867–19873. https://doi.org/10.1007/s11356-019-05260-5

    Article  CAS  Google Scholar 

  • Harasewych, M. G., & McArthur, A. G. (2000). A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda). Marine Biology, 137, 183–194.

    CAS  Google Scholar 

  • Haszprunar, G. (1988). On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies, 54(4), 367–441.

    Google Scholar 

  • Haszprunar, G., Kunze, T., Brückner, M., & Heß, M. (2016). Towards a sound definition of Skeneidae (Mollusca, Vetigastropoda): 3D interactive anatomy of the type species, Skenea serpuloides (Montagu, 1808) and comments on related taxa. Organisms Diversity & Evolution, 16, 577–595.

    Google Scholar 

  • Hendricks, J. R. (2009). Sinistral snail shells in the sea: Developmental causes and consequences. Lethaia, 42(1), 55–66.

    Google Scholar 

  • Hidalgo, F. J., Firstater, F. N., Fanjul, E., Bazterrica, M. C., Lomovasky, B. J., Tarazona, J., & Iribarne, O. O. (2008). Grazing effects of the periwinkle Echinolittorina peruviana at a central Peruvian high rocky intertidal. Helgoland Marine Research, 62(1), 73–83.

    Google Scholar 

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology, 46(6), 3060–3075.

    CAS  Google Scholar 

  • Ho, P.-T., Rhee, H., Kim, J., Seo, C., Park, J. K., Young, C. R., & Won, Y.-J. (2019). Impacts of salt stress on locomotor and transcriptomic responses in the intertidal gastropod Batillaria attramentaria. The Biological Bulletin (Lancaster), 236(3), 224–241.

    Google Scholar 

  • Hornborg, S., Strand, M., Lindegarth, M., & Magnusson, M. (2020). A comparative study of the digestive system of two limpet species, Patella rustica and Nacella polaris, with different feeding habits. Journal of Molluscan Studies, 86(3), 397–406.

    Google Scholar 

  • Hossein Khorasanizadeh, M., Monsef, R., Salavati-Niasari, M., Sh. Majdi, H., Khalid Al-Azzawi, W., & Hashim, F. S. (2023). Schiff-base ligand assisted synthesis of DyVO4/AgBr nanocomposites, characterization, and investigation of photocatalytic activity over organic dye contaminants. Arabian Journal of Chemistry, 16(8), 105020.

  • Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S., & Hothorn, M. T. (2016). Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria.

  • Huang, Y., Xiao, X., Xu, C., Perianen, Y. D., Hu, J., & Holmer, M. (2020). Seagrass beds acting as a trap of microplastics—Emerging hotspot in the coastal region? Environmental Pollution, 257, 113450.

    CAS  Google Scholar 

  • Huelsken, T., Kantor, Y. I., & Fedosov, A. E. (2019). The systematic position of the gastropod family Turridae. Zoological Journal of the Linnean Society, 187(2), 321–362.

    Google Scholar 

  • Hurley, R. R., Woodward, J. C., & Rothwell, J. J. (2017). Ingestion of microplastics by freshwater tubifex worms. Environmental Science & Technology, 51(21), 12844–12851.

    CAS  Google Scholar 

  • Iliff, S. M., Wilczek, E. R., Harris, R. J., Bouldin, R., & Stoner, E. W. (2020). Evidence of microplastics from benthic jellyfish (Cassiopea xamachana) in Florida estuaries. Marine Pollution Bulletin, 159, 111521.

    CAS  Google Scholar 

  • Jambeck, J. R., & Johnsen, K. (2015). Citizen-based litter and marine debris data collection and mapping. Computing in Science & Engineering, 17(4), 20–26.

    Google Scholar 

  • Janssens, L., & Garcia-Vazquez, E. (2021). Dangerous microplastics in topshells and anemones along the north coast of Spain. Marine Pollution Bulletin, 173, 112945.

    CAS  Google Scholar 

  • Jellison, B. M., Ninokawa, A. T., Hill, T. M., Sanford, E., & Gaylord, B. (2016). Ocean acidification alters the response of intertidal snails to a key sea star predator. Proceedings of the Royal Society b: Biological Sciences, 283(1833), 20160890.

    Google Scholar 

  • Kafabihi, Idris, F., Putra, R. D., Nugraha, A. H., Apriadi, T., & Syakti, A. D. (2022). Microplastic contamination extent on Strombus sp. in North Bintan waters. IOP Conference Series. Earth and Environmental Science967(1), 12047.

  • Kamenev, Y. O., Ereskovsky, A. V., & Lavrov, D. V. (2019). New data on the digestive system of Lophotrochozoa. Frontiers in Zoology, 16(1), 19.

    Google Scholar 

  • Kedzierski, M., Lechat, B., Sire, O., Le Maguer, G., Le Tilly, V., & Bruzaud, S. (2020). Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packaging and Shelf Life, 24, 100489.

    Google Scholar 

  • Kennedy, J. J., & Keegan, B. F. (1992). The encapsular developmental sequence of the mesogastropod Turritella communis (Gastropoda: Turritellidae). Journal of the Marine Biological Association of the United Kingdom, 72(4), 783–805.

    Google Scholar 

  • Khedre, A. M., Ramadan, S. A., Ashry, A., & Alaraby, M. (2023a). Pollution of freshwater ecosystems by microplastics: A short review on degradation, distribution, and interaction with aquatic biota. Sohag Journal of Sciences, 8(3), 289–295.

    Google Scholar 

  • Khedre, A. M., Ramadan, S. A., Ashry, A., & Alaraby, M. (2023b). Ingestion and egestion of microplastic by aquatic insects in Egypt wastewater. Environmental Quality Management, 33(1), 135–145.

    Google Scholar 

  • Kleinschmidt, J. M., & Janosik, A. M. (2021). Microplastics in Florida, United States: A case study of quantification and characterization with intertidal snails. Frontiers in Ecology and Evolution, 9, 645727. https://doi.org/10.3389/fevo.2021.645727

    Article  Google Scholar 

  • Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M., & Sanden, M. (2020). Micro- and nanoplastic toxicity on aquatic life: Determining factors. The Science of the Total Environment, 709, 136050–136050.

    Google Scholar 

  • Kolandhasamy, P., Su, L., & Wu, C. (2018). Microplastics in seafood and implications for human health. Current Opinion in Food Science, 21, 65–70. https://doi.org/10.1016/j.cofs.2018.03.003

    Article  Google Scholar 

  • Krishnan, A., Molina, R. L., & Marín, A. (2021). Food ecology of the heterobranch sea slug Aplysia californica. PeerJ, 9, e11425.

    Google Scholar 

  • Lambert, G., Hwang, U. W., Ponder, W. F., & Taylor, J. D. (2019). The anatomy, paleobiology, and evolution of the Gastropoda. Journal of Paleontology, 93(1), 1–2.

    Google Scholar 

  • Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1), 4666–4615.

    CAS  Google Scholar 

  • Lee, K. E., Kim, M. K., & Lee, J. H. (2021). Feeding habits and digestive system of the predatory sea slug Pupa strigosa (Gastropoda: Nudibranchia: Acteonidae). Journal of Molluscan Studies, 87(1), 88–96.

    Google Scholar 

  • Li, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 566–567, 333–349.

    Google Scholar 

  • Li, Q., Sun, C., Wang, Y., Cai, H., Li, L., Li, J., & Shi, H. (2019). Fusion of microplastics into the mussel byssus. Environmental Pollution, 252, 420–426.

    CAS  Google Scholar 

  • Lionetto, F., & Esposito Corcione, C. (2021). An overview of the sorption studies of contaminants on poly(ethylene terephthalate) microplastics in the marine environment. Journal of Marine Science and Engineering, 9(4), 445.

    Google Scholar 

  • Liu, M., Chen, S., & Li, S. (2021). The crystal style of molluscs: Diversity, function, and evolution. Zoological Research, 42(4), 405–418.

    Google Scholar 

  • Lo, H. K. A., & Chan, K. Y. K. (2018). Negative effects of microplastic exposure on growth and development of Crepidula onyx. Environmental pollution, 233, 588–595.

    CAS  Google Scholar 

  • Mansor, M., Yusof, N. M., Zakaria, M. P., & Salamatinia, B. (2020). Microplastic in marine environment: Sources, consequences and reduction strategies—A review. Ocean Engineering, 209, 107558.

    Google Scholar 

  • Markić, M., Klanjšček, T., Pivčević, B., Burić, P., Vrdoljak, A. L., & Đakovac, T. (2018). Occurrence and characteristics of microplastics in the gastrointestinal tract of pelagic and demersal fish from the Adriatic Sea. Marine Environmental Research, 137, 214–221.

    Google Scholar 

  • Marshall, B. A., Gallichan, J., & McDonald, K. (2020). The evolution of gastropods. Biological Reviews, 95(1), 1–28.

    Google Scholar 

  • Marturano, V., Cerruti, P., & Ambrogi, V. (2017). Polymer additives. In B. Tylkowski, K. Wieszczycka & R. Jastrzab (Eds.), Polymer Engineering (pp. 139-170). Berlin, Boston: De Gruyter. https://doi.org/10.1515/9783110469745-005

  • McIntire, L. C., Kotas, T., Flagor, T. E., & Bourdeau, P. E. (2021). Weak directional selection on inducible defensive shell traits in a marine gastropod by the inducing shell-breaking predator. Marine Biology, 168, 1–12.

    Google Scholar 

  • Mikkelsen, P. M., & Bieler, R. (2019). Seashells of Southern Florida: Living marine mollusks of the Florida Keys and adjacent regions, bivalves. Princeton University Press.

    Google Scholar 

  • Miller, M. E., Hamann, M., & Kroon, F. J. (2020). Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS ONE, 15(10), e0240792.

    CAS  Google Scholar 

  • Monsef, R., Ghiyasiyan-Arani, M., & Salavati-Niasari, M. (2018). Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrasonics Sonochemistry, 42, 201–211.

    CAS  Google Scholar 

  • Naji, A., Nuri, M., & Vethaak, A. D. (2018). Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environmental Pollution, 1987(235), 113–120.

    Google Scholar 

  • Nel, H. A., & Froneman, P. W. (2018). Presence of microplastics in the tube structure of the reef-building polychaete Gunnarea gaimardi (Quatrefages 1848). African Journal of Marine Science, 40(1), 87–89.

    Google Scholar 

  • Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S., & Lindeque, P. K. (2018). Investigating microplastic trophic transfer in marine top predators. Environmental Pollution, 238, 999–1007.

    CAS  Google Scholar 

  • Ojeda, M., Cossi, P. F., Rimondino, G. N., Chiesa, I. L., Boy, C. C., & Pérez, A. F. (2021). Microplastics pollution in the intertidal limpet, Nacella magellanica, from Beagle Channel (Argentina). The Science of the Total Environment, 795, 148866–148866.

    CAS  Google Scholar 

  • Patria, M. P., Santoso, C. A., & Tsabita, N. (2020). Microplastic ingestion by periwinkle snail Littoraria scabra and mangrove crab Metopograpsus quadridentata in Pramuka Island, Jakarta Bay, Indonesia. Sains Malaysiana, 49(9), 2151–2158.

    CAS  Google Scholar 

  • Patterson, J., Jeyasanta, K. I., Laju, R. L., Booth, A. M., Sathish, N., & Edward, J. K. P. (2022). Microplastic in the coral reef environments of the Gulf of Mannar, India — Characteristics, distributions, sources and ecological risks. Environmental Pollution, 1987(298), 118848–118848.

    Google Scholar 

  • Perumal, K., & Muthuramalingam, S. (2022). Global sources, abundance, size, and distribution of microplastics in marine sediments — A critical review. Estuarine, Coastal and Shelf Science, 264, 107702.

    CAS  Google Scholar 

  • Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 643, 1644–1651.

    CAS  Google Scholar 

  • PlasticsEurope (2022). Plastics—The facts 2022: An analysis of European plastics production, demand, conversion and end-of-life management. World Plasrics Data, 16.

  • Pratesi, C. B., Almeida, M. A. A. L. S., Paz, G. S. C., Teotonio, M. H. R., Gandolfi, L., Pratesi, R., Hecht, M., & Zandonadi, R. P. (2021). Presence and quantification of microplastic in urban tap water: A pre-screening in Brasilia, Brazil. Sustainability (Switzerland), 13(11), 6404. https://doi.org/10.3390/su13116404

    Article  Google Scholar 

  • Qu, H., Ma, R., Barrett, H., Wang, B., Han, J., Wang, F., Chen, P., Wang, W., Peng, G., & Yu, G. (2020). How microplastics affect chiral illicit drug methamphetamine in aquatic food chain? From green alga (Chlorella pyrenoidosa) to freshwater snail (Cipangopaludian cathayensis). Environment International, 136, 105480–105480.

    CAS  Google Scholar 

  • Reguera, P., Viñas, L., & Gago, J. (2019). Microplastics in wild mussels (Mytilus spp.) from the north coast of Spain. Scientia Marina, 83(4), 337–347.

    CAS  Google Scholar 

  • Romano, N., Ashikin, M., Teh, J. C., Syukri, F., & Karami, A. (2018). Effects of pristine polyvinyl chloride fragments on whole body histology and protease activity in silver barb Barbodes gonionotus fry. Environmental Pollution, 237, 1106–1111.

    CAS  Google Scholar 

  • Sahoo, P. P., Singh, S., Rout, P. K., Mishra, S., & Das, A. P. (2022). Microbial remediation of plastic pollutants generated from discarded and abandoned marine fishing nets. Biotechnology and Genetic Engineering Reviews, 1–16.

  • Salavati-Niasari, M., Ghanbari, D., & Davar, F. (2010). Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. Journal of Alloys and Compounds, 492(1), 570–575.

    CAS  Google Scholar 

  • Saley, K., Sutula, M., & van der Schalie, H. (2019). Microplastic pollution in soft-sediment habitats of Bodega Bay, California. Marine Pollution Bulletin, 146, 1007–1016. https://doi.org/10.1016/j.marpolbul.2019.07.015

    Article  CAS  Google Scholar 

  • Schweizer, M., Triebskorn, R., & Köhler, H. R. (2019). Snails in the sun: Strategies of terrestrial gastropods to cope with hot and dry conditions. Ecology and Evolution, 9(22), 12940–12960.

    Google Scholar 

  • Seng, N., Lai, S., Fong, J., Saleh, M. F., Cheng, C., Cheok, Z. Y., & Todd, P. A. (2020). Early evidence of microplastics on seagrass and macroalgae. Marine and Freshwater Research, 71(8), 922–928.

    Google Scholar 

  • Seuront, L. (2018). Chemical mediation of predator–prey interactions in the presence of microplastics: A behavioural perspective. Philosophical Transactions of the Royal Society B, 373(1746), 20170481. https://doi.org/10.1098/rstb.2017.0481

    Article  Google Scholar 

  • Sfriso, A. A., Tomio, Y., Rosso, B., Gambaro, A., Sfriso, A., Corami, F., Rastelli, E., Corinaldesi, C., Mistri, M., & Munari, C. (2020). Microplastic accumulation in benthic invertebrates in Terra Nova Bay (Ross Sea, Antarctica). Environment International, 137, 105587–105587.

    CAS  Google Scholar 

  • Soekendarsi, E. (2019). Gastropods and edible macroalgae. Journal of Physics. Conference Series, 1341(2), 22018.

    Google Scholar 

  • Song, Y., Qiu, R., Hu, J., Li, X., Zhang, X., Chen, Y., Wu, W.-M., & He, D. (2020). Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. The Science of the Total Environment, 746, 141289.

    CAS  Google Scholar 

  • Stickle, W. B., Carrington, E., & Hayford, H. (2017). Seasonal changes in the thermal regime and gastropod tolerance to temperature and desiccation stress in the rocky intertidal zone. Journal of Experimental Marine Biology and Ecology, 488, 83–91.

    Google Scholar 

  • Storey, K. B., Lant, B., Anozie, O. O., & Storey, J. M. (2013). Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea. Comparative Biochemistry and Physiology Part a: Molecular & Integrative Physiology, 165(4), 448–459.

    CAS  Google Scholar 

  • Strong, E. E., Gargominy, O., Ponder, W. F., & Bouchet, P. (2008). Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Freshwater animal diversity assessment, 149-166.

  • Sudheshna, A. A., Srivastava, M., & Prakash, C. (2022). Characterization of microfibers emission from textile washing from a domestic environment. Science of the Total Environment, 852, 158511.

    CAS  Google Scholar 

  • Taylor, J. D. (1984). A partial food web involving predatory gastropods on a Pacific fringing reef. Journal of Experimental Marine Biology and Ecology, 74(3), 273–290.

    Google Scholar 

  • Thiele, C. J., Hudson, M. D., & Russell, A. E. (2019). Evaluation of existing methods to extract microplastics from bivalve tissue: Adapted KOH digestion protocol improves filtration at single-digit pore size. Marine Pollution Bulletin, 142, 384–393.

    CAS  Google Scholar 

  • Thomas, M. L., & Himmelman, J. H. (1988). Influence of predation on shell morphology of Buccinum undatum L. on Atlantic coast of Canada. Journal of Experimental Marine Biology and Ecology, 115(3), 221–236.

    Google Scholar 

  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science (American Association for the Advancement of Science), 304(5672), 838–838.

    CAS  Google Scholar 

  • Thushari, G. G. N., Senevirathna, J. D. M., Yakupitiyage, A., & Chavanich, S. (2017). Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: An approach to coastal zone conservation. Marine Pollution Bulletin, 124(1), 349–355.

    CAS  Google Scholar 

  • Tian, Y., Yang, Z., Yu, X., Jia, Z., Rosso, M., Dedman, S., Zhu, J., Xia, Y., Zhang, G., Yang, J., & Wang, J. (2022). Can we quantify the aquatic environmental plastic load from aquaculture? Water Research (Oxford), 219, 118551–118551.

    CAS  Google Scholar 

  • Trestrail, C., Walpitagama, M., Hedges, C., Truskewycz, A., Miranda, A., Wlodkowic, D., Shimeta, J., & Nugegoda, D. (2020). Foaming at the mouth: Ingestion of floral foam microplastics by aquatic animals. The Science of the Total Environment, 705, 135826–135826.

    CAS  Google Scholar 

  • United Nations Environment Programme (2018). Single-use plastics: A roadmap for sustainability. Rev. ed., pp. 6.

  • Van Cauwenberghe, L., & Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environmental Pollution, 193, 65–70.

    Google Scholar 

  • Vortsepneva, E., Mikhlina, A., & Kantor, Y. (2023). Main patterns of radula formation and ontogeny in Gastropoda. Journal of Morphology, 284(1), e21538.

    Google Scholar 

  • Walkinshaw, C., Lindeque, P. K., Thompson, R., Tolhurst, T., & Cole, M. (2020). Microplastics and seafood: Lower trophic organisms at highest risk of contamination. Ecotoxicology and Environmental Safety, 190, 110066.

    CAS  Google Scholar 

  • Wang, C., Zhao, J., & Xing, B. (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, 124357–124357.

    CAS  Google Scholar 

  • Wang, Y., Baynes, A., Renner, K. O., Zhang, M., Scrimshaw, M. D., & Routledge, E. J. (2022). Uptake, elimination and effects of cosmetic microbeads on the freshwater gastropod Biomphalaria glabrata. Toxics, 10(2), 87.

    CAS  Google Scholar 

  • Ward, J. E., Levinton, J. S., Shumway, S. E., & Cucci, T. L. (2019). Selective feeding and metabolic responses of Crassostrea virginica and Mytilus edulis exposed to microplastics. Marine Pollution Bulletin, 140, 423–433. https://doi.org/10.1016/j.marpolbul.2019.01.007

    Article  CAS  Google Scholar 

  • Warner, R. R., Miller, M. W., & Lea, B. (1996). Sex change and growth in the slipper limpet Crepidula fornicata. Ecology, 7, 677–690.

    Google Scholar 

  • Watanabe, J. M. (1984). Food preference, food quality and diets of three herbivorous gastropods (Trochidae: Tegula) in a temperate kelp forest habitat. Oecologia, 62, 47–52.

    CAS  Google Scholar 

  • Weber, A., Jeckel, N., Weil, C., Umbach, S., Brennholt, N., Reifferscheid, G., & Wagner, M. (2021). Ingestion and toxicity of polystyrene microplastics in freshwater bivalves. Environmental Toxicology and Chemistry, 40(8), 2247–2260.

    CAS  Google Scholar 

  • Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D., & Matrai, P. A. (2018). Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin, 137, 638–645.

    CAS  Google Scholar 

  • Wootton, N., Sarakinis, K., Varea, R., Reis-Santos, P., & Gillanders, B. M. (2022). Microplastic in oysters: A review of global trends and comparison to southern Australia. Chemosphere, 307(4), 136065–136065.

    CAS  Google Scholar 

  • Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483–492.

    CAS  Google Scholar 

  • Wu, F., Wang, Y., Leung, J. Y. S., Huang, W., Zeng, J., Tang, Y., Chen, J., Shi, A., Yu, X., Xu, X., Zhang, H., & Cao, L. (2020). Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. The Science of the Total Environment, 708, 135432–135432.

    CAS  Google Scholar 

  • Xu, X., Wong, C. Y., Tam, N. F., Lo, H. S., & Cheung, S. G. (2020). Microplastics in invertebrates on soft shores in Hong Kong: Influence of habitat, taxa and feeding mode. Science of the Total Environment, 715, 136999.

    CAS  Google Scholar 

  • Xu, X., Fang, J. K. H., Wong, C. Y., & Cheung, S. G. (2022). The significance of trophic transfer in the uptake of microplastics by carnivorous gastropod Reishia clavigera. Environmental Pollution, 298, 118862.

    CAS  Google Scholar 

  • Yan, Z., Liu, Y., Zhang, T., Zhang, F., Ren, H., & Zhang, Y. (2021). Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environmental Science & Technology, 56(1), 414–421.

    Google Scholar 

  • Zaki, M. R. M., Ying, P. X., Zainuddin, A. H., Razak, M. R., & Aris, A. Z. (2021). Occurrence, abundance, and distribution of microplastics pollution: an evidence in surface tropical water of Klang River estuary. Malaysia. Environmental Geochemistry and Health, 43(9), 3733–3748.

    CAS  Google Scholar 

  • Zhang, D., Liang, B., & Wang, G. (2020a). Mitochondrial genomes of four terrestrial gastropods (Gastropoda: Eupulmonata) from China: New gene arrangements and phylogenetic implications. PeerJ, 8, e8395.

    Google Scholar 

  • Zhang, X., Yan, B., & Wang, X. (2020b). Selection and optimization of a protocol for extraction of microplastics from Mactra veneriformis. Science of the Total Environment, 746, 141250.

    CAS  Google Scholar 

  • Zhang, W., Wang, J., & Zhang, G. (2021). Comparative digestive system of marine gastropods: An overview. Invertebrate Zoology, 18(4), 396–406. https://doi.org/10.1080/18125603.2021.1922802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Curren.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curren, E., Yu, D.C.Y. & Leong, S.C.Y. From the Seafloor to the Surface: a Global Review of Gastropods as Bioindicators of Marine Microplastics. Water Air Soil Pollut 235, 45 (2024). https://doi.org/10.1007/s11270-023-06823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06823-6

Keywords

Navigation