Skip to main content
Log in

Synthesis of Ag2O-TiO2-Kaolinite Clay Nanocomposite for Efficient Removal of Mn2+, Fe3+, Cu2+, and Pb2+ and Pathogens in Mining Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Synthesis of Ag2O-TiO2-kaolinite clay nanocomposite was undertaken to eliminate some selected heavy metals released into the environment from mining wastewater. Silver nitrate and titanium-tetra-isopropoxide were employed as the bulk reagents for the Ag2O-TiO2 nanoparticles synthesis, using an aqueous extract of Parkia biglobossa leaf (green synthesis method). The Ag2O-TiO2 nanoparticles were supported on acid-activated kaolinite clay via wet impregnation method, to develop the nanocomposite and were characterized for phase structure, morphology, and oxidation states. The functionality of the nanocomposite for the sequestration of Mn2+, Fe3+, Cu2+, and Pb2+ ions from mining wastewater was examined by adsorption studies. The XRD pattern of the Ag2O-TiO2-kaolinite clay reveals the synthesis of the rutile phase of TiO2 embedded in the kaolinite clay. While the HRSEM shows an evenly distributed arrangement of hemispherical stacks of kaolinites. The oxidation states of Ag2O and TiO2 revealed by the XPS are + 1 and + 4 respectively either as binary or ternary nanocomposite. The Ag2O-TiO2-clay nanocomposite adsorbed 99.85%, 97.85% 95.18%, and 40% of Mn2+, Fe3+, Cu2+, and Pb2+ ions at 120 min from the mining wastewater respectively. The synergetic efforts of the Ag2O-TiO2-clay were responsible for the adsorptive capability of the nanocomposite for the removal of the selected heavy metal ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format, they are available from the corresponding author upon request.

References

  • Abdallah, M. A. M. (2022). Removing two transition metal ions from spiked wastewater by two modified nano-sorbents. Cogent Engineering, 9, 1. https://doi.org/10.1080/23311916.2022.2035133

    Article  Google Scholar 

  • Abu-Dalo, M., Jaradat, A., Albiss, B. A., & Al-Rawashdeh, N. A. F. (2019). Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering, 7, 103370. https://doi.org/10.1016/j.jece.2019.103370

    Article  CAS  Google Scholar 

  • Abunah, D., Onindo, C., Andala, D., & Ochoti, E. (2019). Physico-chemical removal of heavy metals from contaminated water using recyclable montmorillonite cellulose nanocomposite. Journal of Materials and Environmental Sciences, 10(12), 1349–1361.

    CAS  Google Scholar 

  • Adebayo, G. B., Adegoke, H. I., & Sidiq, F. (2020). Adsorption of Cr(VI) ions onto goethite, activated carbon and their composite: Kinetic and thermodynamic studies. Applied Water Science, 10, 213–231. https://doi.org/10.1007/s13201-020-01295-z

    Article  CAS  Google Scholar 

  • Ajala, E. O., Ayanshola, A. M., Obodo, C. I., Ajala, M. A., & Ajala, O. J. (2022a). Simultaneous removal of Zn(II) ions and pathogens from pharmaceutical wastewater using modified sugarcane bagasse as biosorbents. Results in Engineering, 15, 100493. https://doi.org/10.1016/j.rineng.2022.100493

    Article  CAS  Google Scholar 

  • Ajala, M. A., Abdulkareem, A. S., Tijani, J. O., & Kovo, A. S. (2022b). Adsorptive behaviour of rutile phased titania nanoparticles supported on acid-modifed kaolinite clay for the removal of selected heavy metal ions from mining wastewater. Applied Water Science, 12(19), 1–24. https://doi.org/10.1007/s13201-021-01561-8

    Article  CAS  Google Scholar 

  • Ajala, M. A., Ajala, E. O., Tayo-Alabi, A., Sodiq, H. K., Abdulkareem, A. S., Kovo, A. S., & Tijani, J. O. (2022c). Development of titanium dioxide pillared clay adsorbent for removal of lead(II), zinc(II), and copper(II) ions from aqueous solution. UNIOSUN Journal of Engineering and Environmental Sciences, 4(1), 264–280. https://doi.org/10.36108/ujees/2202.40.0172

    Article  Google Scholar 

  • Ajenifuja, E., Ajao, J. A., & Ajayi, E. O. B. (2016). Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on Ag-TiO2-modified kaolinite ceramic adsorbents. Applied Water Science. https://doi.org/10.1007/s13201-016-0403-6

    Article  Google Scholar 

  • Akinnawo, S. (2019). Synthesis, modification, applications and challenges of titanium dioxide nanoparticles. Research Journal of Nanoscience and Engineering, 3(14), 10–22.

    Google Scholar 

  • Al-Essa, K., & Khalili, F. (2018). Heavy metals adsorption from aqueous solutions onto unmodified and modified Jordanian kaolinite clay: Batch and column techniques. American Journal of Applied Chemistry, 6(1), 25.

    Article  CAS  Google Scholar 

  • APHA. (2017). Standard methods for the examination of water and wastewater (23rd ed.). Washington DC: American Public Health Association

  • Arya, G., Kumari, R. M., Gupta, N., Kumar, A., Chandra, R., & Nimesh, S. (2018). Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: Reaction optimization, antimicrobial and catalytic activities. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 985–993. https://doi.org/10.1080/21691401.2017.1354302

    Article  CAS  Google Scholar 

  • Asamoah, R. B., Yaya, A., Nbelayim, P., Annan, E., & Onwona-Agyeman, B. (2020). Development and characterization of clay-nanocomposites for water purification. Materials (basel, Switzerland), 13(17), 3793. https://doi.org/10.3390/ma13173793

    Article  CAS  Google Scholar 

  • Awasthi, A., Jadhao, P., & Kumari, K. (2019). Clay nano-adsorbent: Structures, applications and mechanism for water treatment. SN Applied Sciences, 1(1076), 1–21. https://doi.org/10.1007/s42452-019-0858-9

    Article  CAS  Google Scholar 

  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017, 3039817. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  • Azam, A., Ahmed, A. S., Oves, M., Khan, M., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and negative bacterial strains. International Journal of Nanomedicine, 7, 3527–3535.

    Article  CAS  Google Scholar 

  • Bagheri, S. B., Ramimoghadam, D., Yousefi, A. T., & Hamid, S. A. (2015). Synthesis, characterization and electrocatalytic activity of silver doped-titanium dioxide nanoparticles. International Journal of Electrochemical Science, 10, 3088–3097.

    Article  CAS  Google Scholar 

  • Bankole, M. T., Abdulkareem, A. S., Mohammed, I. A., Ochigbo, S. S., Tijani, J. O., Abubakre, O. K., & Roos, W. D. (2019). Selected heavymetals removal from electroplating wastewater by purifiedand polyhydroxylbutyrate functionalized carbon nanotubesadsorbents. Scientific Report, 9, 1–19. https://doi.org/10.1038/s41598-018-37899-4

    Article  CAS  Google Scholar 

  • Belver, C., Ponce, S., Carpio, E., Salazar, G., García, P., Bedia, J., Alvárez-Montero, M. A., Rodríguez, J. J. & Rodríguez, J. M. (2020). TiO2:Cex onto Al clays for photocatalytic solar water disinfection. International Journal of Photoenergy, 1–5. https://doi.org/10.1155/2020/8881259

  • Bijang, C. M., Nurdin, M., Azis, T., Sekewael, S. J., & Wattimena, H. (2020). Ouw natural clay-titanium oksida (LaO-TiO2) composite adsorption ability on lead (Pb) metal. Journal of Physics Conference Series, 1463, 012011. https://doi.org/10.1088/1742-6596/1463/1/012011

    Article  CAS  Google Scholar 

  • Budsaereechai, S., Kamwialisak, K., & Ngernyen, Y. (2012). Adsorption of lead, cadmium and copper on natural and acid-activated bentonite clay. KKU Research Journal, 17(5), 800–810

  • Chen, L., Huang, L., Me’ndez-Garcıa, C., Kuang, J., Hua, Z., Liu, J., & Shu, W. (2016). Microbial communities, processes and functions in acid mine drainage ecosystems. Current Opinion in Biotechnology, 38, 150–158. https://doi.org/10.1016/j.copbio.2016.01.013

    Article  CAS  Google Scholar 

  • Choudhary, N., Yadav, V. K., Yadav, K. K., Almohana, A. I., Almojil, S. F., Gnanamoorthy, G., & Jeon, B. H. (2021). Application of green synthesized MMT/Ag nanocomposite for removal of methylene blue from aqueous solution. Water, 13, 3206. https://doi.org/10.3390/w13223206

    Article  CAS  Google Scholar 

  • Das, T. K., & Poater, A. (2021). Review on the use of heavy metal deposits from water treatment waste towards catalytic chemical syntheses. Int J Mol Sci, 22, 24. https://doi.org/10.3390/ijms222413383

    Article  CAS  Google Scholar 

  • Dontsova, T. A., Kutuzova, A. S., Bila, K. O., Kyrii, S. O., Kosogina, I. V., & Nechyporuk, D. O. (2020). Enhanced photocatalytic activity of TiO /SnO binary nanocomposites. Journal of Nanomaterials, 2020, 1–13. https://doi.org/10.1155/2020/8349480

  • Egbosiuba, T. C., Abdulkareem, A. S., Kovo, A. S., Afolabi, E. A., Tijani, J. O., & Roos, W. D. (2020). Enhanced adsorption of As(V) and Mn(VII) from industrial wastewater using multi-walled carbon nanotubes and carboxylated multi-walled carbon nanotubes. Chemosphere, 254, 126780. https://doi.org/10.1016/j.chemosphere.2020.126780

    Article  CAS  Google Scholar 

  • EPA (2017). Environment Protection Act 2017. Act in force. Act number 51/2017 Version. https://www.epa.gov/sites/default/files/2018-08/documents/epa-2018-science_annualreport_508compressed.pdf

  • Ezati, F., Sepehr, E., & Ahmadi, F. (2021). The efficiency of nano-TiO2 and γ-Al2O3 in copper removal from aqueous solution by characterization and adsorption study. Scientific Reports, 11(1), 18831. https://doi.org/10.1038/s41598-021-98051-3

    Article  CAS  Google Scholar 

  • Genty, T., Bussière, B., Benzaazoua, M., Neculita, C. M., & Zagury, G. J. (2017). Iron removal in highly contaminated acid mine drainage using passive biochemical reactors. Water Science and Technology, 76(7), 1833–1843. https://doi.org/10.2166/wst.2017.362

  • Georgaka, A., & Spanos, N. (2010). Study of the Cu(II) removal from aqueous solutions by adsorption on titania. Global NEST Journal, 12(3), 239–247.

    Google Scholar 

  • Guillaume, P. L. A., Chelaru, A., Visa, M., & Lassiné, O. (2018). Titanium oxide-clay” as adsorbent and photocatalysts for wastewater treatment. Journal of Membrane Science and Technology, 8(1), 176–186. https://doi.org/10.4172/2155-9589.1000176

    Article  Google Scholar 

  • Guo, H., Wang, W., Liu, L., He, Y., Li, C., & Wang, Y. (2013). Shape-controlled synthesis of Ag@TiO2 cage-bell hybrid structure with enhanced photocatalytic activity and superior lithium storage+. Green Chemistry, 15, 2810–2816. https://doi.org/10.1039/c3g41280f

    Article  CAS  Google Scholar 

  • Hadjltaief, H. B., Zina, M. B., Galvez, M. E., & Da Costa, P. (2016). Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. Journal of Photochemistry and Photobiology, 315, 25–33.

    Article  Google Scholar 

  • Hajjaji, W., Andrejkovičová, S., Pullar, R. C., Tobaldi, D. M., Lopez-Galindo, A., Jammousi, F., & Labrincha, J. A. (2018). Effective removal of anionic and cationic dyes by kaolinite and TiO2/kaolinite composites. Clay Minerals, 51(1), 19–27. https://doi.org/10.1180/claymin.2016.051.1.02

    Article  CAS  Google Scholar 

  • Han, Y., Zhao, S., Wu, H., & Asuha, S. (2019). Functionalizing naturally occurring kaolinite by anatase nanoparticles and its effects on the adsorption of fluoride. Desalination and Water Treatment, 160(2019), 240–249. https://doi.org/10.5004/dwt.2019.24250

    Article  CAS  Google Scholar 

  • Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., & Yang, C. (2017). Effect of Cu(II) ions on the enhancement of tetracycline adsorption by Fe(3)O(4)@SiO(2)-chitosan/graphene oxide nanocomposite. Carbohydrate Polymers, 157, 576–585. https://doi.org/10.1016/j.carbpol.2016.10.025

    Article  CAS  Google Scholar 

  • Hussain, S. T., & Ali, S. A. K. (2021). Removal of heavy metal by ion exchange using bentonite clay. Journal of Ecological Engineering, 22(1), 104–111. https://doi.org/10.12911/22998993/128865

    Article  Google Scholar 

  • Kanna, M., Wongnawa, W., Sherdshoopongse, P., & Boonsin, P. (2005). Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface. Songklanakarin Journal of Science and Technology, 27(5), 1017–1026

  • Kazak, O., Eker, Y. R., Bingol, H., & Tor, A. (2018). Preparation of chemically-activated high surface area carbon from waste vinasse and its efficiency as adsorbent material. Journal of Molecular Liquids, 272, 189–197. https://doi.org/10.1016/j.molliq.2018.09.085

    Article  CAS  Google Scholar 

  • Khan, S., Dan, Z., Mengling, Y., Yang, Y., Haiyan, H., & Hao, J. (2018). Isotherms, kinetics and thermodynamic studies of adsorption of Ni and Cu by modification of Al2O3 nanoparticles with natural organic matter. Fullerenes, Nanotubes and Carbon Nanostructures, 26(3), 158–167. https://doi.org/10.1080/1536383X.2017.1422490

    Article  CAS  Google Scholar 

  • Khandelwal, A., Narayanan, N., Varghese, E., & Gupta, S. (2020). Linear and nonlinear isotherm models and error analysis for the sorption of kresoxim-methyl in agricultural soils of India. Bulletin of Environmental Contamination and Toxicology, 20, 1–8. https://doi.org/10.1007/s00128-020-02803-2

    Article  CAS  Google Scholar 

  • Krishnan, B., & Mahalingam, S. (2017). Ag/TiO2/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. Advanced Powder Technology, 28, 2265–2280. https://doi.org/10.1016/j.apt.2017.06.007

    Article  CAS  Google Scholar 

  • Kumari, P., Alam, M., & Siddiqi, W. A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 22(2019), 1–14. https://doi.org/10.1016/j.susmat.2019.e00128

    Article  CAS  Google Scholar 

  • Kyomuhimbo, H. D., Michira, I. N., Mwaura, F. B., Derese, S., Feleni, U., & Iwuoha, E. I. (2019). Silver–zinc oxide nanocomposite antiseptic from the extract of Bidens pilosa. SN Applied Sciences, 1(681), 1–17. https://doi.org/10.1007/s42452-019-0722-y

    Article  CAS  Google Scholar 

  • Landage, K. S., Arbade, G. K., Khanna, P., & Bhongale, C. J. (2020). Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and anti-biofilm applications. Journal of Microbiology and Experimentation, 8(1), 36–43. https://doi.org/10.15406/jmen.2020.08.00283

    Article  Google Scholar 

  • Leiva, E., Tapia, C., & Rodríguez, C. (2021). Removal of Mn(II) from acidicwastewaters using graphene oxide–ZnO nanocomposites. Molecules, 26(2713), 1–18. https://doi.org/10.3390/molecules26092713

    Article  CAS  Google Scholar 

  • Liu, F., Zhoub, J., Zhou, L., Zhang, S., Liu, L., & Wang, M. (2015). Effect of neutralized solid waste generated in lime neutralization onthe ferrous ion bio-oxidation process during acid mine drainagetreatment. Journal of Hazardous Materials, 299, 404–411. https://doi.org/10.1016/j.jhazmat.2015.06.035

    Article  CAS  Google Scholar 

  • López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. A., & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(950), 1–19. https://doi.org/10.1007/s42452-019-0977-3

    Article  CAS  Google Scholar 

  • Marque, T. L., Alves, V. N., Coelho, L. M., & Coelho, N. M. M. (2013). Assessment of the use of Moringa oleifera seeds for removal of manganese ions from aqueous systems. BioResources, 8, 2738–2751.

    Google Scholar 

  • Miyah, Y., Lahrichi, A., Idrissi, M., Boujraf, S., Taouda, H., & Zerrouq, F. (2017). Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. Journal of the Association of Arab Universities for Basic and Applied Sciences, 23, 20–28. https://doi.org/10.1016/j.jaubas.2016.06.001

    Article  Google Scholar 

  • Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179(2019), 3–19. https://doi.org/10.1016/j.clay.2019.105151

    Article  CAS  Google Scholar 

  • Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian Journal of Chemistry, 5, 439–446. https://doi.org/10.1016/j.arabjc.2010.12.022

    Article  CAS  Google Scholar 

  • Motlochová, M., Slovák, V., Pližingrová, E., Lidin, S., & Šubrt, J. (2020). Highly-efficient removal of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Advances, 10(7), 3694–3704. https://doi.org/10.1039/C9RA08737K

    Article  Google Scholar 

  • Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92, 42–48. https://doi.org/10.1016/j.minpro.2009.02.005

  • Mungondori, H. H., Mtetwa, S., Tichagwa, L., Katwire, T. M., & Nyamukamba, P. (2017). Synthesis and application of a ternary composite of clay, saw-dust and peanut husks in heavy metal adsorption. Water Science Technology, 12(3), 1–11. https://doi.org/10.2166/wst.2017.123

    Article  CAS  Google Scholar 

  • Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Mohammed, A. K., & Shuaib, D. T. (2019). Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, 5(e02923), 1–17. https://doi.org/10.1016/j.heliyon.2019.e02923

    Article  Google Scholar 

  • Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Ajala, A. O., & Mohammed, A. K. (2020). Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Applied Water Science, 10(49), 1–36. https://doi.org/10.1007/s13201-019-1138-y

  • Mustapha, S. I., Aderibigbe, F. A., Adewoye, T. L., Mohammed, I. A., & Odey, T. O. (2021). Silver and titanium oxides for the removal of phenols from pharmaceutical wastewater. Materials Today: Proceedings, 38, 816–822.

    CAS  Google Scholar 

  • NIS. (2015). Nigerian Industrial Standard NIS 554, Standard Organization of Nigeria. https://africacheck.org/wp-content/uploads/2018/06/Nigerian-Standard-for-Drinking-Water-Quality-NIS-554-2015.pdf

  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10(7), 184. https://doi.org/10.1007/s13201-020-01233-z

    Article  CAS  Google Scholar 

  • Ogbu, I. C., Akpomie, K. G., Osunkunle, A. A., & Eze, S. I. (2019). Sawdust-kaolinite composite as efficient sorbent for heavy metal ions. Bangladesh Journal of Scientiofic and Industrial Research, 54(1), 99–110. https://doi.org/10.3329/bjsir.v54i1.40736

    Article  CAS  Google Scholar 

  • Ognibene, G., Gangemi, C. M. A., D’Urso, A., Purrello, R., Cicala, G., & Fragalà, M. E. (2018). Combined approach to remove and fast detect heavy metals in water based on PES–TiO2 electrospun mats and porphyrin chemosensors. ACS Omega, 3(7), 7182–7190. https://doi.org/10.1021/acsomega.8b00284

    Article  CAS  Google Scholar 

  • Ogunleye, O. O., Ajala, M. A., & Agarry, S. E. (2014). Evaluation of biosorptive capacity of banana (Musa paradisiaca) stalk for lead(II) removal from aqueous solution. Journal of Environmental Protection., 5, 1451–1465. https://doi.org/10.4236/jep.2014.515138

    Article  CAS  Google Scholar 

  • Oguzhan, A., Yildiz, B., Semih, G., & Ozge, K. (2016). Ag doped TiO2 nanoparticles prepared by hydrothermal method and coating of the nanoparticles on the ceramic pellets for photocatalytic study: Surface properties and photoactivity. Journal of Engineering Technology and Applied Sciences, 1(1), 1–12.

    Google Scholar 

  • Ouyang, D., Zhuo, Y., Hu, L., Zeng, Q., Hu, Y., & He, Z. (2019). Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings. Minerals, 9(291), 1–16. https://doi.org/10.3390/min9050291

    Article  CAS  Google Scholar 

  • Pandiyarajan, T., Udayabhaskar, V., Vignesh, S., James, R. A., & Karthikeyan, B. (2013). Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. Material Science and Engineering, 33, 2020–2024.

    CAS  Google Scholar 

  • Petrik, L., Missengue, R., Fatoba, O., Tuffin, M., & Sachs, J. (2012). Silver/ zeolite nano composite-based clay filters for water disinfection. South Africa: Retrieved from Gezina.

    Google Scholar 

  • Pintor, A. M. A., Vieira, B. R. C., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2018). Arsenate and arsenite adsorption onto iron-coated cork granulates. Science of Total Environment, 642, 1075–1089. https://doi.org/10.1016/j.scitotenv.2018.06.170

    Article  CAS  Google Scholar 

  • Poursani, S. K., Nilchi, A., Hassani, A., Shariat, S. M., & Nouri, J. (2016). The synthesis of nano TiO2 and its use for removal of lead ions from aqueous solution. Journal of Water Resource and Protection, 8(2019), 438–448. https://doi.org/10.4236/jwarp.2016.84037

    Article  CAS  Google Scholar 

  • Pradeep, T., & Jain, P. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 90(1), 59–63.

    Article  Google Scholar 

  • Rubio, S. R. T. J. (2010). Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 23(2010), 1131–1138. https://doi.org/10.1016/j.mineng.2010.07.007

    Article  CAS  Google Scholar 

  • Rudi, N. N., Muhamad, M. S., Chuan, L. T., Alipal, J., Omar, S., Hamidon, N., & Harun, H. (2020). Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon, 6(e05049). https://doi.org/10.1016/j.heliyon.2020.e05049

  • Sadasivam, S., & Rao, S. (2016). Characterization of silver—kaolinite (AgK): An adsorbent for long–lived 129I species. SpringerPlus, 5(142), 1–13. https://doi.org/10.1186/s40064-016-1855-8

  • Sdiri, A. T., Higashi, T., & Jamoussi, F. (2014). Adsorption of copper and zinc onto natural clay in single and binary systems. International Journal of Environmental Science and Technology, 11, 1081–1092. https://doi.org/10.1007/s13762-013-0305-1

  • Shivaraju, H. P., Egumbo, H., Madhusudan, P., Anil-Kumar, K.M., & Midhun, G. (2019) Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water. Environmental Technology, 40(13), 1633–1643. https://doi.org/10.1080/09593330.2018.1430853

  • Sodhi, K. K., Mishra, L. C., Singh, C. K., & Kumar, M. (2022). Perspective on the heavy metal pollution and recent remediation strategies. Current Research in Microbial Sciences, 3, 100166. https://doi.org/10.1016/j.crmicr.2022.100166

    Article  CAS  Google Scholar 

  • Sotomayor, F. J., Cychosz, K. A., & Thommes, M. (2018). Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Accounts of Material and Surface Research, 3(2), 34–50.

    Google Scholar 

  • Suresh, S., Pradheesh, G., & Ramani, V. A. (2018). Biosynthesis and characterization of CuO, MgO and Ag2O nanoparticles, anti inflammatory activity and phytochemical screening of the ethanolic extract of the medicinal plant Pavetta indica Linn. Journal of Pharmacognosy and Phytochemistry, 7(4), 1984–1990.

    CAS  Google Scholar 

  • Sushman, D., & Richa, S. (2015). Use of nanoparticles in water treatment: A review. International Research Journal of Environment Sciences, 4(10), 103–106.

    Google Scholar 

  • Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2015). Thermodynamics and kinetics of the removal of manganese(II) ions from aqueous solutions by white rice husk ash. Journal of Molecular Liquids, 211, 938–947

  • Trinh, V. T., Nguyen, T. M., Van, H. T., Hoang, L. P., Nguyen, T. V., Ha, L. T., & Nguyen, X. C. (2020). Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Scientific Reports, 10(3634), 1–13. https://doi.org/10.1038/s41598-020-60542-0

    Article  CAS  Google Scholar 

  • Wasewar, K. L., Singh, S., & Kansal, S. K. (2020). Chapter 13 - Process intensification of treatment of inorganic water pollutants. In P. Devi, P. Singh, & S. K. Kansal (Eds.), Inorganic Pollutants in Water (pp. 245–271). Elsevier.

    Chapter  Google Scholar 

  • WHO (2017) Guidelines for Drinking Water Quality. 4th edn., World Health Organization, Geneva, Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/10665/254637/1/9789241549950-eng.pdf

  • Yadav, K. K., Singh, J. K., Gupta, N., & Kumar, V. (2017). A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. Journal of Materials and Environmental Science, 8(2), 740–757.

    CAS  Google Scholar 

  • Zacaroni, L. M., Magriotis, Z. M., das Graças Cardoso, M., Santiago, W. D., Mendonça, J. G., Vieira, S. S., & Nelson, D. L. (2015). Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cachaça. Food Control, 47, 536–544.

    Article  CAS  Google Scholar 

  • Zendelska, A., Golomeova, M., Golomeov, B., & Krstev, B. (2018). Effect of competing cations (Cu, Zn, Mn, Pb) adsorbed by zeolite bearing tuff from Macedonia. Nature Environment and Pollution Technology, 17(1), 21–23.

    CAS  Google Scholar 

  • Zheng, X., Yu, N., Wang, X., Wang, Y., Wang, L., Li, X., & Hu, X. (2018). Adsorption Properties of granular activated carbon-supported titanium dioxide particles for dyes and copper ions. Scientific Reports, 8(1), 6463. https://doi.org/10.1038/s41598-018-24891-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Adejoke Ajala.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajala, M.A., Abdulkareem, A.S., Kovo, A.S. et al. Synthesis of Ag2O-TiO2-Kaolinite Clay Nanocomposite for Efficient Removal of Mn2+, Fe3+, Cu2+, and Pb2+ and Pathogens in Mining Wastewater. Water Air Soil Pollut 235, 42 (2024). https://doi.org/10.1007/s11270-023-06811-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06811-w

Keywords

Navigation