Skip to main content
Log in

Biodegradation Studies of Phenol, Diclofenac, and Pentachlorophenol in a Packed Bed Reactor Loaded with Immobilized White Rot Fungus Lentinus sajor-caju Biomass

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A white rot fungus “Lentinus sajor-caju” was immobilized in Ca-alginate beads via entrapment. This method was used to increase fungal biodegradation activity and to allow immobilized fungal recycling and reuse. The mechanical strength of the fungal biomass–immobilized Ca-alginate beads was stable about 95%. The degradation rates of the three different phenolic compounds (i.e., phenol, diclofenac, and pentachlorophenol) from synthetic wastewaters were studied using the immobilized L. sajor-caju. Under optimized conditions, the biodegradation performance of the immobilized fungal biomass was studied in a packed bed reactor at different substrate concentrations. The degradation rates of the immobilized L. sajor-caju for phenol was 100% for 60 h, while for diclofenac and pentachlorophenol were found to be 87 and 51% when incubated for 120 h at 30 °C and determined by high performance liquid chromatography (HPLC). The toxicity of the phenol, diclofenac, and pentachlorophenol and their degradation products was evaluated by using three different bio-indicators organisms: (i) Daphnia magna (a freshwater microcrustaceane), (ii) a fresh water green alga Chlamydomonas reinhardtii, and (iii) Triticum aestivum L. (Turkish winter wheat). In addition, the reusability and efficiency of the same immobilized biomass were tested in successive biodegradation studies in the continuous system. These results suggest that the immobilized L. sajor-caju for degrading phenol, diclofenac, and pentachlorophenol can provide a cheap and easy approach for the removal of phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All relevant data are available upon request.

References

  • Adnan, L. A., Sathishkumar, P., Yusoff, A. R. M., Hadibarata, T., & Ameen, F. (2017). Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess & Biosystems Engineering, 40, 85–97.

    CAS  Google Scholar 

  • Arica, M. Y., & Bayramoglu, G. (2005). Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253, 203–211.

    CAS  Google Scholar 

  • Arica, M. Y., & Bayramoglu, G. (2007). Bio sorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journal of Hazardous Materials, 149, 499–507.

    CAS  Google Scholar 

  • Arica, T. A., Ayas, E., & Arica, M. Y. (2017). Magnetic MCM-41 silica particles grafted with poly (glycidylmethacrylate) brush: Modification and application for removal of direct dyes. Microporous and Mesoporous Materials, 243, 164–175.

    CAS  Google Scholar 

  • Arica, T. A., Balci, F. M., Balci, S., & Arica, M. Y. (2022). Highly porous poly(o-phenylenediamine) loaded magnetic carboxymethyl cellulose hybrid beads for removal of two model textile dyes. Fiber and Polymers, 23, 2838–2854.

    CAS  Google Scholar 

  • Basaka, B., Jeon, B.-H., Kurade, M. B., Saratale, G. D., Bhunia, B., Chatterjee, P. K., & Dey, A. (2019). Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor. Ecotoxicology and Environmental Safety, 180, 317325.

    Google Scholar 

  • Bayramoglu, G., & Arica, M. Y. (2007). Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor. Journal of Hazardous Materials, 143, 135–143.

    CAS  Google Scholar 

  • Bayramoglu, G., Akbulut, A., & Arica, M. Y. (2015). Study of polyethyleneimine- and amidoxime-functionalized hybrid biomass of Spirulina (Arthrospira) platensis for adsorption of uranium (VI) ion. Environmental Science and Pollution Research, 22, 17998–178010.

    CAS  Google Scholar 

  • Bayramoglu, G., Angi, S. B., Acikgoz-Erkaya, I., & Arica, M. Y. (2022). Preparation of effective green sorbents using O. princeps alga biomass with different composition of amine groups: Comparison to adsorption performances for removal of a model acid dye. Journal of Molecular Liquids, 347, 118375.

    CAS  Google Scholar 

  • Bayramoglu, G., & Arica, M. Y. (2011). Preparation of a composite biosorbent using Scenedesmus quadricauda biomass and alginate/polyvinyl alcohol for removal of Cu(II) and Cd(II) ions: Isotherms, kinetics, and thermodynamic studies. Water Air & Soil Pollution, 221, 391–403.

    CAS  Google Scholar 

  • Bayramoglu, G., Salih, B., Akbulut, A., & Arica, M. Y. (2019). Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-ToF-MS: Toxicity assessment studies by Daphnia magna and Chlorella vulgaris. Ecotoxicology and Environmental Safety, 170, 453–460.

    CAS  Google Scholar 

  • Benit, N., Lourthuraj, A. A., Barathikannan, K., Mostafa, A. A.-F., Alodaini, H. A., Yassin, M. T., & Hatamle, A. A. (2022). Immobilization of Halomonas halodurans and Bacillus halodurans in packed bed bioreactor for continuous removal of phenolic impurities in waste water. Environmental Research, 209, 112822.

    CAS  Google Scholar 

  • Bhardwaj, P., Kaur, N., Selvaraj, M., Ghramh, H. A., Al-Shehri, B. M., Singh, G., Arya, S. K., Bhatt, K., Ghotekar, S., Mani, R., Chang, S. W., Ravindran, B., & Awasthi, M. K. (2022). Laccase-assisted degradation of emerging recalcitrant compounds – A review. Bioresource Technology, 364, 28031.

    Google Scholar 

  • Chen, Z., Wu, J. W., Huang, Y., Li, Y., Mao, J., Han, Y., & Wang, L. (2022). A recyclable UCST-type biocatalyst to catalyze H2O2 degradation of phenol. Journal of Environmental Chemical Engineering, 11, 109072.

    Google Scholar 

  • D’Annibale, C. R., Pieruccetti, A., Stazi, F., Giovannozzi-Sermanni, S. R., & Lo-Cascio, G. (2003). Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 50, 959–966.

    Google Scholar 

  • de Araújo, A. G. C., Aranha, G. M., Maciel, G. M., Haminiuk, C. W. I., Inácio, F. D., Rodrigues, J. H. S., Peralta, R. M., & de Souza, C. G. M. (2020). Biodiscoloration, detoxification and biosorption of Reactive Blue 268 by Trametes sp. M3: A strategy for the treatment of textile effluents. Water Air & Soil Pollution, 231, 349.

    Google Scholar 

  • Dong, Y., Li, L., Hu, X., & Wu, C. (2017). Optimization of o-chlorophenol biodegradation by combined mycelial pellets using response surface methodology. Water Air & Soil Pollution, 228, 431.

    Google Scholar 

  • Du, X., Zhang, X., Liu, J., Zhang, Z., Wu, L., Bai, X., Tan, C., Gong, Y., Zhang, Y., & Li, H. (2023). Establishment of evaluation system for biological remediation on organic pollution in groundwater using slow-release agents. Science of The Total Environment, 903, 166522.

    CAS  Google Scholar 

  • EPA U. (1979). Water-related environmental fate of 129 priority pollutants. Office of Water Planning and Standards, Office of Water and Waste Management. US Environmental Protection Agency. https://catalogue.nla.gov.au/catalog/2901608

    Google Scholar 

  • Hadibarata, T., Adnan, L. A., Yusoff, A. R. M., Yuniarto, A., Rubiyatno, Zubir, M. M. F. A., Khudhair, A. B., Teh, Z. C., & Naser, M. A. (2023). Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water Air & Soil Pollution, 224, 1595.

    Google Scholar 

  • Hejna, M., Kapuscinska, D., & Aksmann, A. (2022). Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. International Journal of Environmental Research and Public Health, 19, 7717.

    CAS  Google Scholar 

  • ISO 6341. (2012). Water quality — Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test. https://www.iso.org/standard/54614.html

  • Jiang, Y., Deng, T., Shang, Y., Yang, K., & Wang, H. (2017). Biodegradation of phenol by entrapped cell of Debaryomyces sp. With nano-Fe3O4 under hypersaline conditions. International Biodeterioration & Biodegradation, 123, 37–45.

    CAS  Google Scholar 

  • Iliuta, I., & Iliuta, M. C. (2022). Intensified phenol and p-cresol biodegradation for wastewater treatment in countercurrent packed-bed column bioreactors. Chemosphere, 286, 131716.

    CAS  Google Scholar 

  • Lau, S. H., Lin, I.-C., Su, C.-L., Chang, Y.-T., & Jane, W.-N. (2022). Synthesis of cross-linked magnetic chitosan beads immobilized with bacteria for aerobic biodegrading benzophenone-type UV filter. Chemosphere, 307, 136010.

    CAS  Google Scholar 

  • Leong, K.-Y., Adnan, R., Lim, P.-E., Ng, S.-L., & Seng, C.-E. (2017). Effect of operational factors on bioregeneration of binary phenol and 4-chlorophenol-loaded granular activated carbon using PVA-immobilized biomass cryogels. Environmental Science and Pollution Research, 24, 20959–20971.

    CAS  Google Scholar 

  • Li, X., Zhu, H., Zhang, Y., Meng, R., Xiong, Z., & Xia, Y. (2023). Magnetic alginate carbon aerogel adsorbents for water-/oil-soluble dyes. Water Air & Soil Pollution, 234, 197.

    CAS  Google Scholar 

  • Martínkova, L., Kotik, M., Markova, E., & Homolka, L. (2016). Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere, 149, 373–382.

    Google Scholar 

  • Matejczyk, M., Plaza, G. A., Nalecz-Jawecki, G., Ulfig, K., & Markowska-Szczupak, A. (2011). Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere, 82, 1017–1023.

    CAS  Google Scholar 

  • Moreira, I. S., Bessa, V. S., Murgolo, S., Piccirillo, C., Mascolo, G., & Castro, P. M. L. (2018). Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11. Ecotoxicology and Environmental Safety, 152, 104–113.

    CAS  Google Scholar 

  • Naskar, A., & Majumder, R. (2017). Understanding the adsorption behavior of acid yellow 99 on Aspergillus niger biomass. Journal of Molecular Liquids, 242, 892–899.

    CAS  Google Scholar 

  • OECD. (1984). Acute immobilization test, Daphnia sp., OECD Guideline for the testing of chemicals, Guideline 202, 1984. https://www.oecd.org/chemicalsafety/risk-assessment/1948249.pdf

  • OECD. (2011). Freshwater alga and cyanobacteria, growth inhibition test. OECD Guideline for the testing of chemicals, Guideline 201, 2011. https://www.oecd-ilibrary.org/docserver/9789264069923-en.pdf?expires=1694519771&id=id&accname=ocid43023564&checksum=44391F5CACD2A04C02A04E308FDE37E4

  • Ogugbue, C. J., & Sawidis, T. (2011). Bioremediation and detoxification of synthetic wastewater containing Triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnological Research International, 967925.

  • Panigrahy, N., Priyadarshini, A., Sahoo, M. M., Verma, A. K., Daverey, A., & Sahoo, N. K. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolic: Recent progress and future outlook. Environmental Technology and Innovation, 27, 102423.

    CAS  Google Scholar 

  • Shahabivand, S., Mortazavi, S. S., Mahdavinia, G. R., & Darvishi, F. (2022). Phenol biodegradation by immobilized Rhodococcus qingshengii isolated from coking effluent on Na-alginate and magnetic chitosan-alginate nanocomposite. Journal of Environmental Management, 307, 114586.

    CAS  Google Scholar 

  • Sodhi, K. K., & Singh, D. K. (2021). Insight into the fluoroquinolone resistance, sources, ecotoxicity, and degradation with special emphasis on ciprofloxacin. Journal of Water Process Engineering, 43, 102218.

    Google Scholar 

  • Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., & Liu, D. (2016). The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation. PLoS Genetics, 12, e1006194.

    Google Scholar 

  • Tan, H., Hu, Y., He, J., Wu, L., Liao, F., Luo, B., He, Y., Zuo, Z., Ren, Z., Zhong, Z., Peng, G., & Deng, J. (2014). Zearalenone degradation by two Pseudomonas strains from soil. Mycotoxin Research, 30, 191–196.

    CAS  Google Scholar 

  • Terreros-Mecalco, J., Guzman-Lopez, O., & García-Solorio, L. (2022). Simultaneous aerobic-anaerobic biodegradation of an industrial effluent of polymeric resins with high phenol concentration at different organic loading rates in a non-conventional UASB type reactor. Chemical Engineering Journal, 430, 133180.

    CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (1996). Test methods for evaluating solid waste, SW846. Method 3052 - Microwave assisted acid digestion of siliceous and organically based matrices (3rd ed.). Washington, DC, (USA): Office of Solid Waste and Emergency Response.

    Google Scholar 

  • Wojcieszynska, D., Marchlewicz, A., & Guzik, U. (2020). Suitability of immobilized systems for microbiological degradation of endocrine disrupting compounds. Molecules, 25, 4473.

    CAS  Google Scholar 

  • Wu, H., Xu, X., Qin, Y., Jiang, Y., & Lin, Z. (2022). Study on treatment of acid red G with bio-carbon compound immobilized white rot fungi. Water Science and Technology, 85, 2945.

    CAS  Google Scholar 

  • Wu, Y.-H., Li, J.-Y., Wang, C.-C., & Chen, C.-Y. (2020). Effect of oxalate unit on polycarbonate-based polyurethane and biodegradation by fungi. Materials Chemistry and Physics, 252, 123463.

    CAS  Google Scholar 

  • Xia, L., Luo, X., Zhu, Y., Zhang, X., & Luo, L. (2019). Effects of CaCl2 freeze-drying and acidic solutions on the reusability of calcium alginate beads; and degradation of phenol by immobilized Acinetobacter sp. PR1. Biochemical Engineering Journal, 151, 107339.

    CAS  Google Scholar 

  • Xiao, P., & Kondo, R. (2020). Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. Journal of Wood Sciences, 66, 2.

    CAS  Google Scholar 

  • Xing, L., Sun, J., Liu, H., & Yu., H. (2012). Combined toxicity of three chlorophenols 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol to Daphnia magna. Journal of Environmental Monitoring, 4, 1677–1683.

    Google Scholar 

  • Xue, J., Wu, Y., Fu, X., Li, N., Sun, J., & Qiao, Y. (2020). Study on degradation characteristics and bacterial community structure changes of immobilized cells in straw-alginate beads in marine environment. Bioresource Technology Reports, 10, 100402.

    Google Scholar 

  • Young, B. J., Rizzo, P. F., Riera, N. I., Torre, V. D., López, V. A., Molina, C. D., Fernández, F. E., Crespo, D. C., Barrena, R., Komilis, D., & Sánchez, A. (2016). Development of phytotoxicity indexes and their correlation with eco-toxicological, stability and physicochemical parameters during passive composting of poultry manure. Waste Management, 54, 101–109.

    CAS  Google Scholar 

  • Zhao, L., Xiao, D., Liu, Y., Xu, H., Nan, H., Li, D., Kan, Y., & Cao, X. (2020). Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Research, 172, 115494.

    CAS  Google Scholar 

  • Zhuo, R., & Fan, F. (2021). A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Science of the Total Environment, 778, 146132.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GB: investigation, acquisition of data, validation, and writing—original draft; MYA: formal analysis, conceptualization, and writing—review and editing

Corresponding author

Correspondence to Gulay Bayramoglu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 49 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayramoglu, G., Arica, M.Y. Biodegradation Studies of Phenol, Diclofenac, and Pentachlorophenol in a Packed Bed Reactor Loaded with Immobilized White Rot Fungus Lentinus sajor-caju Biomass. Water Air Soil Pollut 234, 620 (2023). https://doi.org/10.1007/s11270-023-06634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06634-9

Keywords

Navigation