Skip to main content
Log in

Removal of Methyl Orange in Aqueous Solutions Using Hydrochloric Acid-Modified Kaolinite Supported Nanosized Zero-Valent Iron

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study presents an efficient application of the Fenton reaction for the degradation of methyl orange (MO), utilizing a composite of hydrochloric acid-modified kaolinite supported nanosized zero-valent iron (mk-nZVI). The successful loading of Fe0 onto the hydrochloric acid–modified kaolinite was confirmed through scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses. Key variables, such as solution pH, reaction temperature, mk-nZVI dose, initial MO solution concentration, and H2O2 concentration, were manipulated to examine the efficacy of the mk-nZVI/H2O2 system in the degradation of MO. The system demonstrated improved degradation performance with decreased pH and increased temperature. Under the following conditions: an initial pH of 5.6, a reaction temperature of 25 °C, an mk-nZVI dose of 2 g/L, an initial MO solution concentration of 100 mg/L, and an H2O2 concentration of 74.8 mmol/L, an MO degradation of 96.56% was achieved using the mk-nZVI/H2O2-based Fenton-like reaction. This performance was markedly superior to the traditional Fenton method in decolorizing MO solutions. UV–Vis spectroscopy demonstrated the mk-nZVI/H2O2-based Fenton-like reaction’s effectiveness in degrading MO’s azo structure. The degradation of MO was primarily attributed to the action of surface-bounded hydroxyl radicals. The findings indicate that the synthesized mk-nZVI composite holds promise for efficient treatment of MO in water, establishing it as a prospective composite material for wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data presented in this study are included in the article.

References

  • Arts, A., Schmuhl, R., de Groot, M. T., & van der Schaaf, J. (2021). Fast initial oxidation of formic acid by the Fenton reaction under industrial conditions. Journal of Water Process Engineering, 40, 101780.

    Article  Google Scholar 

  • Bagus, P. S., Nelin, C. J., Brundle, C. R., Crist, B. V., Lahiri, N., & Rosso, K. M. (2020). Covalency in Fe2O3 and FeO: Consequences for XPS satellite intensity. The Journal of Chemical Physics, 153(19), 4702.

    Article  Google Scholar 

  • Barndok, H., Blanco, L., Hermosilla, D., & Blanco, A. (2016). Heterogeneous photo-Fenton processes using zero valent iron microspheres for the treatment of wastewaters contaminated with 1,4-dioxane. Chemical Engineering Journal, 284, 112–121.

    Article  CAS  Google Scholar 

  • Bastidas, G. K. G., Sierra, C. A., & Ramirez, H. R. Z. (2018). Heterogeneous Fenton oxidation of Orange II using iron nanoparticles supported on natural and functionalized fique fiber. Journal of Environmental Chemical Engineering, 6(4), 4178–4188.

    Article  Google Scholar 

  • Buhani, S., Miftahza, N., Permatasari, D., & Sumadi. (2021). Improved Adsorption Capacity of Nannochloropsis sp. through Modification with Cetyltrimethylammonium Bromide on the Removal of Methyl Orange in Solution. Adsorption Science & Technology, 2021, 1–14.

    Article  Google Scholar 

  • Chen, H., Cheng, H., Zhou, F., Chen, K., Qiao, K., Lu, X., Ouyang, P., & Fu, J. (2018). Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. Journal of Analytical and Applied Pyrolysis, 131, 76–84.

    Article  CAS  Google Scholar 

  • Daud, N. K., & Hameed, B. H. (2010). Fenton-like oxidation of reactive black 5 solution using iron–Montmorillonite K10 catalyst. Journal of Hazardous Materials, 176(1), 1118–1121.

    Article  CAS  Google Scholar 

  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40.

    Article  Google Scholar 

  • El-Desoky, H. S., Ghoneim, M. M., & Zidan, N. M. (2010). Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264(1), 143–150.

    Article  CAS  Google Scholar 

  • Elfadly, A. M., Zeid, I. F., Yehia, F. Z., Abouelela, M. M., & Rabie, A. M. (2017). Production of aromatic hydrocarbons from catalytic pyrolysis of lignin over acid-activated bentonite clay. Fuel Processing Technology, 163, 1–7.

    Article  CAS  Google Scholar 

  • El Maguana, Y., Elhadiri, N., Benchanaa, M., & Chikri, R. (2020). Adsorption Thermodynamic and Kinetic Studies of Methyl Orange onto Sugar Scum Powder as a Low-Cost Inorganic Adsorbent. Journal of Chemistry, 2020, 9165874.

    Article  Google Scholar 

  • Fan, J., Guo, Y., Wang, J., & Fan, M. (2009). Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166, 904–910.

    Article  CAS  Google Scholar 

  • Feng, J., Hu, X., & Yue, P. L. (2006). Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research, 40(4), 641–646.

    Article  CAS  Google Scholar 

  • Galdames, A., Ruiz-Rubio, L., Orueta, M., Sánchez-Arzalluz, M., & Vilas-Vilela, J. L. (2020). Zero-valent iron nanoparticles for soil and groundwater remediation. International Journal of Environmental Research and Public Health, 17(16), 5817.

    Article  CAS  Google Scholar 

  • Gandhi, D., Bandyopadhyay, R., & Soni, B. (2021). Zeolite Y from kaolin clay of Kachchh, India: Synthesis, characterization and catalytic application. Journal of the Indian Chemical Society, 98(12), 100246.

    Article  CAS  Google Scholar 

  • Gao, X., Li, M., Zhao, Y., & Zhang, Y. (2019). Mechanistic study of selective adsorption of Hg2+ ion by porous alginate beads. Chemical Engineering Journal, 378, 122096.

    Article  CAS  Google Scholar 

  • Hamad, H., Bassyouni, D., El-Ashtoukhy, E. S., Amin, N., & Abd El-Latif, M. (2018). Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism. Ecotoxicology and Environmental Safety, 148, 501–512.

    Article  CAS  Google Scholar 

  • Hassan, A. K., Al-Kindi, G. Y., & Ghanim, D. (2020). Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye. Water Science and Engineering, 13(4), 286–298.

    Article  Google Scholar 

  • Jiang, R., Fu, Y. Q., Zhu, H. Y., Yao, J., & Xiao, L. (2012). Removal of methyl orange from aqueous solutions by magnetic maghemite/chitosan nanocomposite films: Adsorption kinetics and equilibrium. Journal of Applied Polymer Science, 125(S2), E540–E549.

    Article  CAS  Google Scholar 

  • Jin, X., Zhuang, Z., Yu, B., Chen, Z., & Chen, Z. (2016). Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound. Carbohydrate Polymers, 136, 1085–1090.

    Article  CAS  Google Scholar 

  • Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M., & Abdul Khalil, H. P. S. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: Mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43, 102255.

    Article  Google Scholar 

  • Li, D., Mao, Z., Zhong, Y., Huang, W. L., Wu, Y. D., & Peng, P. A. (2016). Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Research, 103, 1–9.

    Article  Google Scholar 

  • Lin, J., Sun, M., Liu, X., & Chen, Z. (2017). Functional kaolin supported nanoscale zero-valent iron as a Fenton-like catalyst for the degradation of Direct Black G. Chemosphere, 184, 664–672.

    Article  CAS  Google Scholar 

  • Li, Q., Chen, Z. S., Wang, H. H., Yang, H., Wen, T., Wang, S. Q., Hu, B. W., & Wang, X. K. (2021). Removal of organic compounds by nanoscale zero-valent iron and its composites. Science of the Total Environment, 792, 148546.

    Article  CAS  Google Scholar 

  • Li, R., Jin, X., Megharaj, M., Naidu, R., & Chen, Z. (2015). Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system. Chemical Engineering Journal, 264, 587–594.

    Article  CAS  Google Scholar 

  • Marcon, L., Oliveras, J., & Puntes, V. F. (2021). In situ nanoremediation of soils and groundwaters from the nanoparticle’s standpoint: A review. Science of the Total Environment, 791, 148324.

    Article  CAS  Google Scholar 

  • Mekatel, E. H., Amokrane, S., Aid, A., Nibou, D., & Trari, M. (2015). Adsorption of methyl orange on nanoparticles of a synthetic zeolite naa/cuo. Comptes Rendus Chimie, 18(3), 336–344.

    Article  CAS  Google Scholar 

  • Munagapati, V. S., Yarramuthi, V., & Kim, D. (2017). Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. Journal of Molecular Liquids, 240, 329–339.

    Article  CAS  Google Scholar 

  • Park, M. H., Jeong, S., Lee, G., Park, H., & Kim, J. Y. (2019). Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds. Waste Management, 92, 49–58.

    Article  CAS  Google Scholar 

  • Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zboril, R., & Karakassides, M. A. (2013). Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 261, 295–306.

    Article  CAS  Google Scholar 

  • Pelalak, R., Heidari, Z., Khatami, S. M., Kurniawan, T. A., Marjani, A., & Shirazian, S. (2021). Oak wood ash/GO/Fe3O4 adsorption efficiencies for cadmium and lead removal from aqueous solution: Kinetics, equilibrium and thermodynamic evaluation. Arabian Journal of Chemistry, 14(3), 102991.

    Article  CAS  Google Scholar 

  • Quintelas, C., Figueiredo, H., & Tavares, T. (2011). The effect of clay treatment on remediation of diethylketone contaminated wastewater: Uptake, equilibrium and kinetic studies. Journal of Hazardous Materials, 186(2), 1241–1248.

    Article  CAS  Google Scholar 

  • Rabie, A. M., Mohammed, E. A., & Negm, N. A. (2018). Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. Journal of Molecular Liquids, 254, 260–266.

    Article  CAS  Google Scholar 

  • Refat, M. S., Saad, H. A., Gobouri, A. A., Alsawat, M., Adam, A. M. A., & El-Megharbel, S. M. (2021). Charge transfer complexation between some transition metal ions with azo Schiff base donor as a smart precursor for synthesis of nano oxides: An adsorption efficiency for treatment of Congo red dye in wastewater. Journal of Molecular Liquids, 345, 117140.

    Article  Google Scholar 

  • Sabarudin, A., Madjid, A. D. R. (2021). Preparation and kinetic studies of cross-linked chitosan beads using dual crosslinkers of tripolyphosphate and epichlorohydrin for adsorption of methyl orange. The Scientific World Journal, 2021, 6648457.

  • Shi, B., Gao, S., Yu, H., Zhang, L., Song, C., & Huang, K. (2020). Fe0 nanoparticles encapsulated in hollow porous nanosphere frameworks for efficient degradation of methyl orange. Reactive and Functional Polymers, 153, 104614.

    Article  CAS  Google Scholar 

  • Shi, L.-n, Zhang, X., & Chen, Z.-l. (2011). Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45(2), 886–892.

    Article  CAS  Google Scholar 

  • Tang, X., Li, Z., Liu, K., Luo, X., He, D., Ao, M., & Peng, Q. (2020). Sulfidation modified Fe3O4 nanoparticles as an efficient Fenton-like catalyst for azo dyes degradation at wide pH range. Powder Technology, 376, 42–51.

    Article  CAS  Google Scholar 

  • Tanwar, R., Kumar, S., & Mandal, U. K. (2017). Photocatalytic activity of PANI/Fe0 doped BiOCl under visible light-degradation of Congo red dye. Journal of Photochemistry and Photobiology a: Chemistry, 333, 105–116.

    Article  CAS  Google Scholar 

  • Taha, M. R., & Ibrahim, A. H. (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering, 2(1), 1–8.

    Article  CAS  Google Scholar 

  • Varjani, S., Rakholiya, P., Ng, H. Y., You, S. M., & Teixeira, J. A. (2020). Microbial degradation of dyes: An overview. Bioresource Technology, 314, 123728.

    Article  CAS  Google Scholar 

  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., Kirkham, M. B., & Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 113, 219–230.

    Article  CAS  Google Scholar 

  • Waheed, A., Baig, N., Ullah, N., & Falath, W. (2021). Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. Journal of Environmental Management, 287, 112360.

    Article  CAS  Google Scholar 

  • Wang, Y., Jiang, L., Shang, H., Li, Q., & Zhou, W. (2020). Treatment of azo dye wastewater by the self-flocculating marine bacterium Aliiglaciecola lipolytica. Environmental Technology & Innovation, 19, 100810.

    Article  Google Scholar 

  • Xie, Z., Zhou, J., Wang, J., François-Xavier, C. P., & Wintgens, T. (2019). Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization: The synergistic effects of σ-Cu-ligand, dual-reaction centres and oxygen vacancies. Applied Catalysis B: Environmental, 253, 28–40.

    Article  CAS  Google Scholar 

  • Xu, L., & Wang, J. (2011). A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials, 186(1), 256–264.

    Article  CAS  Google Scholar 

  • Xue, X., Hanna, K., Abdelmoula, M., & Deng, N. (2009). Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Applied Catalysis B: Environmental, 89(3), 432–440.

    Article  CAS  Google Scholar 

  • Yu, R.-F., Chen, H.-W., Cheng, W.-P., Lin, Y.-J., & Huang, C.-L. (2014). Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 947–954.

    Article  CAS  Google Scholar 

  • Zheng, J., Tang, X., Zhang, S., Huang, T., Zheng, H., & Sun, B. (2020). Relationship between the structure of chitosan-based flocculants and their performances in the treatment of model azo dyeing wastewater. Chemosphere, 247, 125920.

    Article  CAS  Google Scholar 

  • Zhou, Y. Y., Ma, L. Y., Li, R., Chen, D., Lu, Y. Y., Cheng, Y. Y., Lou, X. X., Xie, H., & Zhou, W. C. (2021). Enhanced heat-resistance property of aluminum-coated carbonyl iron particles as microwave absorption materials. Journal of Magnetism and Magnetic Materials, 524, 167681.

    Article  CAS  Google Scholar 

  • Zhu, H., Jiang, R., & Xiao, L. (2010a). Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Applied Clay Science, 48(3), 522–526.

    Article  CAS  Google Scholar 

  • Zhu, H., Jiang, R., Xiao, L., & Li, W. (2010b). A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. Journal of Hazardous Materials, 179, 251–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Chongqing, China (cstc2021jcyj-bshX0231, cstc2020jcyj-msxmX0763, cstc2021jcyj-msxmX0328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangyang Zhang or Bo Zu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhang, Y., Zu, B. et al. Removal of Methyl Orange in Aqueous Solutions Using Hydrochloric Acid-Modified Kaolinite Supported Nanosized Zero-Valent Iron. Water Air Soil Pollut 234, 420 (2023). https://doi.org/10.1007/s11270-023-06417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06417-2

Keywords

Navigation