Skip to main content

Advertisement

Log in

Electrical Resistivity and Induced Polarization Methods for Environmental Investigations: an Overview

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Contamination of soils and groundwater is one of the most serious environmental problems. The sources of contamination are several and include, among others (i) landfills and industrial waste disposal sites, (ii) saline intrusion, (iii) accidental spills of chemical products or hydrocarbon such as diesel or gasoline, and (iv) pollutants of agricultural origin. Electrical resistivity and induced polarization (IP) methods have been widely used in diagnosis and monitoring of polluted areas since the electrical properties of contaminated formations are distinct from the surrounding medium. This review paper, based on many resistivity/IP surveys performed over the last two decades, presents (i) the basic principles of both methods, (ii) objectives of the surveys carried out, (iii) data acquisition methodologies used in the different surveys, (iv) complementary geophysical methods as well as other types of data (hydrogeological, physicochemical, petrological, geotechnical and others) used in order to validate and calibrate the resistivity/IP data, and (v) significant and representative results obtained both in the field and in the laboratory. Advantages and limitations of these methods are analyzed, and future challenges are also pointed out. The overview shows the suitability of the resistivity/IP methods for imaging contaminated areas, monitoring the behavior of contamination, assessing the risk of groundwater pollution, characterizing the geometry of landfills body and defining the geological structure of coastal aquifer systems. These methods can also help to monitor microbial activity, but it is not yet possible to fully understand the biogeochemical processes involved and their impact on electrical signatures. The SIP technique can play a key role in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Modified from Kumar et al., 2021)

Fig. 3

Similar content being viewed by others

Data Availability Statements

The data that support the findings of this study are available from several scientific journal databases, such as Scopus, and are not publicly available. Data are however available upon reasonable request and with permission of the publishers.

References

  • Abdel Aal, G. Z., & Atekwana, E. A. (2014). Spectral induced polarization (SIP) response of biodegraded oil in porous media. Geophysical Journal International, 196, 804–817. https://doi.org/10.1093/gji/ggt416

    Article  CAS  Google Scholar 

  • Abdel Aal, G. Z., Slater, L. D., & Atekwana, E. A. (2006). Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics, 71, H13–H24. https://doi.org/10.1190/1.2187760

    Article  Google Scholar 

  • Abdullahi, N. K., Osazuwa, I. B., & Onugba, A. (2010). Detecting municipal solid waste leachate plumes through electrical resistivity survey and physio-chemical analysis of groundwater samples. Journal of American Science, 6, 540–548.

    Google Scholar 

  • Abu-Zeid, N., Bianchini, G., Santarato, G., & Vaccaro, C. (2004). Geochemical characterization and geophysical mapping of Landfill leachates: The Marozzo canal case study (NE Italy). Environmental Geology, 45, 439–447. https://doi.org/10.1007/s00254-003-0895-x

    Article  CAS  Google Scholar 

  • Adeyemo, I. A., Omosuy, G. O., & Adelusi, A. O. (2017). Geoelectric soundings for delineation of saline water intrusion into aquifers in part of Eastern Dahomey Basin, Nigeria. Journal of Geoscience and Environment Protection, 5, 213–232. https://doi.org/10.4236/gep.2017.53015

    Article  Google Scholar 

  • Aduojo, A. A., Ayolabi, E. A., & Adewale, A. (2018). Time dependent electrical resistivity tomography and seasonal variation assessment of groundwater around the Olushosun dumpsite Lagos, South-west, Nigeria. Journal of African Earth Sciences, 147, 243–253. https://doi.org/10.1016/j.jafrearsci.2018.06.024

    Article  CAS  Google Scholar 

  • Ahmed, A. S., Revil, A., & Gross, L. (2019). Multiscale induced polarization tomography in hydrogeophysics: A new approach. Advances in Water Resources, 134, 103451. https://doi.org/10.1016/j.advwatres.2019.103451

    Article  Google Scholar 

  • Alhumimidi, M. S. (2020). An integrated approach for identification of seawater intrusion in coastal region: A case study of northwestern Saudi Arabia. Journal of King Saud University Science, 32(7), 3187–3194. https://doi.org/10.1016/j.jksus.2020.09.010

    Article  Google Scholar 

  • Allen, J. P., Atekwana, E. A., Atekwana, E. A., Duris, J. W., Werkema, D. D., & Rossbach, S. (2007). The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Applied and Environmental Microbiology, 73, 2860–2870.

    Article  CAS  Google Scholar 

  • Ammar, A. I., Gomaa, M., & Kamal, K. A. (2021). Applying of SP, DC-Resistivity, DC-TDIP and TDEM soundings in high saline coastal aquifer. Heliyon, 7, 07617. https://doi.org/10.1016/j.heliyon.2021.e07617

    Article  CAS  Google Scholar 

  • Atekwana, E. A., Sauck, W. A., & Werkema, D. D., Jr. (2000). Investigations of geoelectrical signatures at a hydrocarbon contaminated site. Journal of Applied Geophysics, 44, 167–180.

    Article  Google Scholar 

  • Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., Jr., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56, 281–294. https://doi.org/10.1016/j.jappgeo.2004.08.003

    Article  Google Scholar 

  • Atekwana, E. A., Sauck, W. A., & Werkema Jr, D. D. (1988). Characterization of a complex refinery groundwater contamination plume using multiple geoelectric methods. In: Bell, RS, Powers MH, Larson T _Eds.,Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems _SAGEEP 1998, pp. 427–436.

  • Attwa, M., Günther, T., Grinat, M., & Binot, F. (2011). Evaluation of DC, FDEM and IP resistivity methods for imaging perched saltwater and a shallow channel within coastal tidal flat sediments. Journal of Applied Geophysics, 75, 656–670. https://doi.org/10.1016/j.jappgeo.2011.09.002

    Article  Google Scholar 

  • Audebert, M., Clément, R., Touze-Foltz, N., Günther, T., Moreau, S., & Duquennoi, C. (2014). Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS). Journal of Applied Geophysics, 111, 320–333. https://doi.org/10.1016/j.jappgeo.2014.09.024

    Article  Google Scholar 

  • Audebert, M., Clément, R., Moreau, S., Duquennoi, C., Loisel, S., & Touze-Foltz, N. (2016). Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling – Part I: Analysis of infiltration shape on two different waste deposit cells. Waste Management, 55, 165–175. https://doi.org/10.1016/j.wasman.2016.04.006

    Article  CAS  Google Scholar 

  • Ayolabi, E. A., Folorunso, A. F., & Idem, S. S. (2013). Application of Electrical Resistivity Tomography in Mapping Subsurface Hydrocarbon Contamination. Earth Science Research, 2(1)

  • Bahkaly, I. M., El-Waheidi, M. M., Jallouli, C., & Batayneh, A. T. (2015). Assessment of shallow aquifer salinity in the Aqaba Coastal plain using ERT method: A case study of Maqnah region, northwestern Saudi Arabia. Environmental Earth Sciences, 74, 2105–2114. https://doi.org/10.1007/s12665-015-4195-z

    Article  CAS  Google Scholar 

  • Batayneh, A. T. (2005). 2D Electrical Imaging of an LNAPL Contamination, Al Amiriyya Fuel Station. Jordan Journal of Applied Science, 5, 52–59.

    Article  Google Scholar 

  • Batayneh, A. T. (2006). Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration: A case study of the eastern Dead Sea coastal aquifers. Jordan Hydrogeological Journal, 14, 1277–1283. https://doi.org/10.1007/s10040-006-0034-3

    Article  CAS  Google Scholar 

  • Bauer, P., Supper, R., Zimmermann, S., & Kinzelbach, W. (2006). Geoelectrical imaging of groundwater salinization in the Okavango Delta, Botswana. Journal of Applied Geophysics, 60, 126–141. https://doi.org/10.1016/j.jappgeo.2006.01.003

    Article  Google Scholar 

  • Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping ground-water contamination using dc resistivity and VLF geophysical methods – A case study. Geophysics, 62, 80–86.

    Article  Google Scholar 

  • Bernstone, C., Dahlin, T., Ohlsson, T., & Hogland, W. (2000). DC-resistivity mapping of internal landfill structures: Two pre-excavation surveys. Environmental Geology, 39, 360–371.

    Article  CAS  Google Scholar 

  • Bichet, V., Grisey, E., & Aleya, L. (2016). Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Engineering Geology, 211, 61–73. https://doi.org/10.1016/j.enggeo.2016.06.026

    Article  Google Scholar 

  • Bording, T. S., Fiandaca, G., Maurya, P. K., Auken, E., Christiansen, A. V., Tuxen, N., Klint, K. E. S., & Larsen, T. H. (2019). Cross-borehole tomography with full-decay spectral time-domain induced polarization for mapping of potential contaminant flow-paths. Journal Contaminant Hydrology, 226, 103523. https://doi.org/10.1016/j.jconhyd.2019.103523

    Article  CAS  Google Scholar 

  • Boudreault, J. P., Dubé, J. S., Chouteau, M., Winiarski, T., & Hardy, É. (2010). Geophysical characterization of contaminated urban fills. Engineering Geology, 116, 196–206. https://doi.org/10.1016/j.enggeo.2010.09.002

    Article  Google Scholar 

  • Buselli, G., & Lu, K. (2001). Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. Journal of Applied Geophysics, 48, 11–23.

    Article  Google Scholar 

  • Campbell, D. L., Lucius, J. E., Ellefsen, K. J., Deszcz-Pan, M. (1996) Monitoring of a controlled LNAPL spill using ground penetrating radar. In Proceedings of the Symposium on the Application of Geophysics to Environmental and Engineering Problems, pp 511–517

  • Cardarelli, E., & Di Filippo, G. (2009). Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: A case study in Rho (Milan – Italy). Waste Management & Research, 27, 595–602. https://doi.org/10.1177/0734242X09102524

    Article  CAS  Google Scholar 

  • Casado, I., Mahjoub, H., Lovera, R., Fernández, J., & Casas, A. (2015). Use of electrical tomography methods to determinate the extension and main migration routes of uncontrolled landfill leachates in fractured areas. Science of the Total Environment, 506–507, 546–553. https://doi.org/10.1016/j.scitotenv.2014.11.068

    Article  CAS  Google Scholar 

  • Casas, A., Himi, M., Diaz, Y., Pinto, V., Font, X., & Tapias, J. C. (2008). Assessing aquifer vulnerability to pollutants by electrical resistivity tomography (ERT) at a nitrate vulnerable zone in NE Spain. Environmental Geology, 54, 515–520. https://doi.org/10.1007/s00254-007-0844-1

    Article  CAS  Google Scholar 

  • Cassiani, G., Bruno, V., Villa, A., Fusi, N., & Binley, A. M. (2006). A saline trace test monitored via time-lapse surface electrical resistivity tomography. Journal of Applied Geophysics, 59, 244–259. https://doi.org/10.1016/j.jappgeo.2005.10.007

    Article  Google Scholar 

  • Caterina, D., Orozco, A. F., & Nguyen, F. (2017). Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination. Journal Contaminant Hydrology, 201, 19–29. https://doi.org/10.1016/j.jconhyd.2017.04.003

    Article  CAS  Google Scholar 

  • Cercato, M., & De Donno, G. (2020). Time-lapse monitoring of an electrokinetic soil remediation process through frequency-domain electrical measurements. Journal of Applied Geophysics, 175, 103980. https://doi.org/10.1016/j.jappgeo.2020.103980

    Article  Google Scholar 

  • Chambers, J. C., Kuras, O., Meldrum, P. I., Ogilvy, R. D., & Hollands, J. (2006). Case History: Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics, 71, B231–B239. https://doi.org/10.1190/1.2360184

    Article  Google Scholar 

  • Che-Alota, V., Atekwana, E. A., Atekwana, E. A., Sauck, W. A., & Werkema, D. D., Jr. (2009). Case History: Temporal geophysical signatures from contaminant-mass remediation. Geophysics, 74, B113–B123. https://doi.org/10.1190/1.3139769

    Article  Google Scholar 

  • Cimino, A., Cosentino, C., Oieni, A., & Tranchina, L. (2008). A geophysical and geochemical approach for seawater intrusion assessment in the Acquedolci coastal aquifer (Northern Sicily). Environmental Geology, 55, 1473–1482. https://doi.org/10.1007/s00254-007-1097-8

    Article  CAS  Google Scholar 

  • Costall, A., Harris, B., & Pigois, J. P. (2018). Electrical resistivity imaging and the saline water interface in high quality coastal aquifers. Surveys in Geophysics, 39, 753–816. https://doi.org/10.1007/s10712-018-9468-0

    Article  Google Scholar 

  • Dahlin, T., Bernstone, C., & Loke, M. H. (2002). Case History: A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics, 67, 1692–1700. https://doi.org/10.1190/1.1527070

    Article  Google Scholar 

  • Davis, C. A., Atekwana, E., Atekwana, E., Slater, L. D., Rossbach, S., & Mormile, M. R. (2006). Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophysical Research Letters, 33, L18403. https://doi.org/10.1029/2006GL027312

    Article  CAS  Google Scholar 

  • De Carlo, L., Perri, M. T., Caputo, M. C., Deiana, R., & Cassiani, G. (2013). Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method. Journal of Applied Geophysics, 98, 1–10. https://doi.org/10.1016/j.jappgeo.2013.07.010

    Article  Google Scholar 

  • de Franco, R., Biella, G., Tosi, L., Teatini, P., Lozej, A., Chiozzotto, B., Giada, M., Rizzetto, F., Claude, C., Mayer, A., Bassan, V., & Gasparetto-Stori, G. (2009). Monitoring the saltwater intrusion by the time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy). Journal of Applied Geophysics, 69, 117–130. https://doi.org/10.1016/j.jappgeo.2009.08.004

    Article  Google Scholar 

  • Deceuster, J., & Kaufmann, O. (2012). Improving the delineation of hydrocarbon-impacted soils and water through induced polarization (IP) tomographies: A field study at an industrial waste land. Journal Contaminant Hydrology, 136–137, 25–42. https://doi.org/10.1016/j.jconhyd.2012.05.003

    Article  CAS  Google Scholar 

  • Deng, Y., Shi, X., Xu, H., Sun, Y., Wu, J., & Revil, A. (2017). Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration – Comparison with high-resolution light transmission visualization in laboratory sandbox. Journal of Hydrology, 544, 254–266. https://doi.org/10.1016/j.jhydrol.2016.11.036

    Article  Google Scholar 

  • Deng, Y., Shi, X., Revil, A., Wu, J., & Ghorbani, A. (2018). Complex conductivity of oil-contaminated clayey soils. Journal of Hydrology, 561, 930–942. https://doi.org/10.1016/j.jhydrol.2018.04.055

    Article  Google Scholar 

  • Deng, Y., Shi, X., Zhang, Z., Sun, Y., Wu, J., & Qian, J. (2020). Application of spectral induced polarization for characterizing surfactant-enhanced DNAPL remediation in laboratory column experiments. Journal Contaminant Hydrology, 230, 103603. https://doi.org/10.1016/j.jconhyd.2020.103603

    Article  CAS  Google Scholar 

  • Depountis, N., Harris, C., Davies, M. C. R., Koukis, G., & Sabatakakis, N. (2005). Application of electrical imaging to leachate plume evolution studies under in-situ and model conditions. Environmental Geology, 47, 907–914. https://doi.org/10.1007/s00254-004-1219-5

    Article  Google Scholar 

  • Dumont, G., Pilawski, T., Dzaomuho-Lenieregue, P., Hiligsmann, S., Delvigne, F., Thonart, P., Robert, T., Nguyen, F., & Hermans, T. (2016). Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill. Waste Management, 55, 129–140. https://doi.org/10.1016/j.wasman.2016.02.013

    Article  Google Scholar 

  • Edet, A. E., & Okereke, C. S. (2001). A regional study of saltwater intrusion in southeastern Nigeria based on the analysis of geoelectrical and hydrochemical data. Environmental Geology, 40, 1278–1289. https://doi.org/10.1007/s002540100313

    Article  CAS  Google Scholar 

  • Fadili, A., Mehdi, K., Riss, J., Najib, S., Makan, A., & Boutayab, K. (2015). Evaluation of groundwater mineralization processes and seawater intrusion extension in the coastal aquifer of Oualidia, Morocco: Hydrochemical and geophysical approach. Arabian Journal of Geosciences, 8, 8567–8582. https://doi.org/10.1007/s12517-015-1808-5

    Article  CAS  Google Scholar 

  • Fadili, A., Najib, S., Mehdi, K., Riss, J., Malaurent, P., & Makan, A. (2017). Geoelectrical and hydrochemical study for the assessment of seawater intrusion evolution in coastal aquifers of Oualidia, Morocco. Journal of Applied Geophysics, 146, 178–187. https://doi.org/10.1016/j.jappgeo.2017.09.020

    Article  Google Scholar 

  • Feng, S. J., Bai, Z. B., Cao, B. Y., Lu, S. F., & Ai, S. G. (2017). The use of electrical resistivity tomography and borehole to characterize leachate distribution in Laogang landfill, China. Environmental Science and Pollution Research, 24, 20811–20817. https://doi.org/10.1007/s11356-017-9853-0

    Article  Google Scholar 

  • Folch, A., del Val, L., Luquot, L., Martínez-Pérez, L., Bellmunt, F., Le Lay, H., Rodellas, V., Ferrer, N., Palacios, A., Fernández, S., Marazuela, M. A., Diego-Feliu, M., Pool, M., Goyetche, T., Ledo, J., Pezard, P., Bour, O., Queralt, P., Marcuello, A., … Carrera, J. (2020). Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer. Journal of Hydrology, 588, 125050. https://doi.org/10.1016/j.jhydrol.2020.125050.

  • Frid, V., Liskevich, G., Doudkinski, D., & Korostishevsky, N. (2008). Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environmental Geology, 53, 1503–1508. https://doi.org/10.1007/s00254-007-0761-3

    Article  Google Scholar 

  • Frohlich, R. K., Barosh, P. J., & Boving, T. (2008). Investigating changes of electrical characteristics of the saturated zone affected by hazardous organic waste. Journal of Applied Geophysics, 64, 25–36. https://doi.org/10.1016/j.jappgeo.2007.12.001

    Article  Google Scholar 

  • Galazoulas, E. C., Mertzanides, Y. C., Petalas, C. P., & Kargiotis, E. K. (2015). Large scale electrical resistivity tomography survey correlated to hydrogeological data for mapping groundwater salinization: A case study from a multilayered coastal aquifer in Rhodope, Northeastern Greece. Environmental Processes, 2, 19–35. https://doi.org/10.1007/s40710-015-0061-y

    Article  Google Scholar 

  • García-Menéndez, O., Ballesteros, B. J., Renau-Pruñonosa, A., Morell, I., Mochales, T., Ibarra, P. I., & Rubio, F. M. (2018). Using electrical resistivity tomography to assess the effectiveness of managed aquifer recharge in a salinized coastal aquifer. Environmental Monitoring and Assessement, 190, 100. https://doi.org/10.1007/s10661-017-6446-9

    Article  CAS  Google Scholar 

  • Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., & Christiansen, A. V. (2012). Mapping of landfills using time-domain spectral induced polarization data: The Eskelund case study. Near Surface Geophysics, 10, 575–586.

    Article  Google Scholar 

  • Genelle, F., Sirieix, C., Riss, J., & Naudet, V. (2012). Monitoring landfill cover by electrical resistivity tomography on an experimental site. Engineering Geology, 145–146, 18–29. https://doi.org/10.1016/j.enggeo.2012.06.002

    Article  Google Scholar 

  • Godio, A., & Naldi, M. (2003). Two-dimensional electrical imaging for detection of hydrocarbon contaminants. Near Surface Geophysics, 1, 131–137.

    Article  Google Scholar 

  • Goebel, M., Pidlisecky, A., & Knight, R. (2017). Resistivity imaging reveals complex pattern of saltwater intrusion along Monterey coast. Journal of Hydrology, 551, 746–755. https://doi.org/10.1016/j.jhydrol.2017.02.037

    Article  Google Scholar 

  • Greggio, N., Giambastiani, B. M. S., Balugani, E., Amaini, C., & Antonellini, M. (2018). High-resolution electrical resistivity tomography (ERT) to characterize the spatial extension of freshwater lenses in a salinized coastal aquifer. Water, 10, 1067. https://doi.org/10.3390/w10081067

    Article  Google Scholar 

  • Grumman, D. L., & Daniels, J. J. (1995). Experiments on the detection of organic contaminants in the vadose zone. Journal of Environmental and Engineering Geophysics, 1(1), 31–38.

    Article  Google Scholar 

  • Guérin, R., Munoz, M. L., Aran, C., Laperrelle, C., Hidra, M., Drouart, E., & Grellier, S. (2004a). Leachate recirculation: Moisture content assessment by means of a geophysical technique. Waste Management, 24, 785–794. https://doi.org/10.1016/j.wasman.2004.03.010

    Article  CAS  Google Scholar 

  • Guérin, R., Bégassat, P., Benderitter, Y., David, J., Tabbagh, A., & Thiry, M. (2004b). Geophysical study of the industrial waste land in Mortagne-du-Nord (France) using electrical resistivity. Near Surface Geophysics, 2, 137–143.

    Article  Google Scholar 

  • Halihan, T., Paxton, S., Graham, I., Fenstemaker, T., & Riley, M. (2005). Post-remediation evaluation of a LNAPL site using electrical resistivity imaging. Journal of Environmental Monitoring, 7, 283–287.

    Article  CAS  Google Scholar 

  • Heenan, J., Porter, A., Ntarlagiannis, D., Young, L. Y., Werkema, D. D., & Slater, L. D. (2013). Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes. Geophysics, 78, E261–E269. https://doi.org/10.1190/GEO2013-0085.1

    Article  Google Scholar 

  • Hermans, T., Vandenbohede, A., Lebbe, L., Martin, R., Kemna, A., Beaujean, J., & Nguyen, F. (2012). Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data. Journal of Hydrology, 438–439, 168–180. https://doi.org/10.1016/j.jhydrol.2012.03.021

    Article  CAS  Google Scholar 

  • Hermozilha, H., Grangeia, C., & Senos Matias, M. (2010). An integrated 3D constant offset GPR and resistivity survey on a sealed landfill — Ilhavo, NW Portugal. Journal of Applied Geophysics, 70, 58–71. https://doi.org/10.1016/j.jappgeo.2009.11.004

    Article  Google Scholar 

  • Hu, J., Wu, X. W., Ke, H., Xu, X. B., Lan, J. W., & Zhan, L. T. (2019). Application of electrical resistivity tomography to monitor the dewatering of vertical and horizontal wells in municipal solid waste landfills. Engineering Geology, 254, 1–12. https://doi.org/10.1016/j.enggeo.2019.03.021

    Article  Google Scholar 

  • Hwang, S., Shin, J., Park, I., & Lee, S. (2004). Assessment of seawater intrusion using geophysical well logging and electrical soundings in a coastal aquifer, Youngkwang-gun, Korea. Exploration Geophysics, 35, 99–104. https://doi.org/10.1071/EG04099

    Article  Google Scholar 

  • Iravani, M. A., Deparis, J., Davarzani, H., Colombano, S., Guérin, R., & Maineult, A. (2020). The influence of temperature on the dielectric permittivity and complex electrical resistivity of porous media saturated with DNAPLs: A laboratory study. Journal of Applied Geophysics, 172, 103921. https://doi.org/10.1016/j.jappgeo.2019.103921

    Article  Google Scholar 

  • Jacome, M., Costanzo-Alvarez, V., Aldana, M., Patraskovic, P., Drielsma, C., Galatro, D., & Amon, C. (2021). A methodology to characterize a sanitary landfill combining, through a numerical approach, a geoelectrical survey with methane point-source concentrations. Environmental Technology & Innovation, 21, 101225. https://doi.org/10.1016/j.eti.2020.101225

    Article  CAS  Google Scholar 

  • Johnson, T. C., Versteeg, R. J., Ward, A., Day-Lewis, F. D., & Revil, A. (2010). Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data. Geophysics, 75, WA27–WA41.

    Article  Google Scholar 

  • Karaoulis, M., Tsourlos, P., Kim, J. H., & Revil, A. (2014). 4D time-lapse ERT inversion: Introducing combined time and space constraints. Near Surface Geophysics, 12, 25–34.

    Article  Google Scholar 

  • Kazakis, N., Pavlou, A., Vargemezis, G., Voudouris, K. S., Soulios, G., Pliakas, F., & Tsokas, G. (2016). Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf. Greece. Science of the Total Environment, 543, 373–387. https://doi.org/10.1016/j.scitotenv.2015.11.041

    Article  CAS  Google Scholar 

  • Kemna, A., Binley, A., & Slater, L. (2004). Crosshole IP imaging for engineering and environmental applications. Geophysics, 69, 97–107. https://doi.org/10.1190/1.1649379

    Article  Google Scholar 

  • Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K. H., Orozco, A. F., Haegel, F. H., Hordt, A., Kruschwitz, S., Leroux, V., Konstantin, T., & Zimmermann, E. (2012). An overview of the spectral induced polarization method for near-surface applications. Near Surface Geophysics, 10, 453–468.

    Article  Google Scholar 

  • Konstantaki, L. A., Ghose, R., Draganov, D., Diaferia, G., & Heimovaara, T. (2015). Characterization of a heterogeneous landfill using seismic and electrical resistivity data. Geophysics, 80, EN13–EN25. https://doi.org/10.1190/GEO2014-0263.1

    Article  Google Scholar 

  • Koukadaki, M. A., Karatzas, G. P., Papadopoulou, M. P., & Vafidis, A. (2007). Identification of the saline zone in a coastal aquifer using electrical tomography data and simulation. Water Resources Management, 21, 1881–1898. https://doi.org/10.1007/s11269-006-9135-y

    Article  Google Scholar 

  • Kouzana, L., Benassi, R., Ben, M., & Sfar Felfoul, M. (2010). Geophysical and hydrochemical study of the seawater intrusion in Mediterranean semi arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia). Journal of African Earth Sciences, 58, 242–254. https://doi.org/10.1016/j.jafrearsci.2010.03.005

    Article  CAS  Google Scholar 

  • Kumar, P., Tiwari, P., Singh, A., Biswas, A., & Acharya, T. (2021). Electrical Resistivity and Induced Polarization signatures to delineate the near-surface aquifers contaminated with seawater invasion in Digha, West-Bengal. India. Catena, 207, 105596. https://doi.org/10.1016/j.catena.2021.105596

    Article  CAS  Google Scholar 

  • Kura, N. U., Ramli, M. F., Ibrahim, S., Sulaiman, W. N. A., & Aris, A. Z. (2014). An integrated assessment ofseawater intrusion ina small tropical island using geophysical, geochemical, and geostatistical techniques. Environmental Science and Pollution Research, 21, 7047–7064. https://doi.org/10.1007/s11356-014-2598-0

    Article  CAS  Google Scholar 

  • Lago, A. L., Elis, V. R., Borges, W. R., & Penner, G. C. (2009). Geophysical investigation using resistivity and GPR methods: A case study of a lubricant oil waste disposal area in the city of Ribeirão Preto, São Paulo, Brazil. Environmental Geology, 58, 407–417. https://doi.org/10.1007/s00254-008-1511-x

    Article  CAS  Google Scholar 

  • Leroux, V., Dahlin, T., & Svensson, M. (2007). Dense resistivity and induced polarization profiling for a landfill restoration project at Härlöv, Southern Sweden. Waste Management & Research, 25, 49–60. https://doi.org/10.1177/0734242X07073668

    Article  Google Scholar 

  • Lesmes, D. P., & Morgan, F. D. (2001). Dielectric spectroscopy of sedimentary rocks. Journal of Geophysical Research, 106, 13329–13346.

    Article  Google Scholar 

  • Li, C., Tercier, P., & Knight, R. (2001). Effect of sorbed oil on the dielectric properties of sand and clay. Water Resources Research, 37, 1783–1793.

    Article  Google Scholar 

  • Ling, C., Zhou, Q., Xue, Y., Zhang, Y., Li, R., & Liu, J. (2013). Application of electrical resistivity tomography to evaluate the variation in moisture content of waste during 2 months of degradation. Environmental Earth Sciences, 68, 57–67. https://doi.org/10.1007/s12665-012-1715-y

    Article  CAS  Google Scholar 

  • Loke, M. H., & Barker, R. D. (1996a). Rapid least-squares inversion of apparent resistivity pseudo-sections using quasi-Newton method. Geophysical Prospecting, 44, 131–152.

    Article  Google Scholar 

  • Loke, M. H., & Barker, R. (1996b). Pratical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 44, 499–523.

    Article  Google Scholar 

  • Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkimson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156.

    Article  Google Scholar 

  • Manzur, S. R., Hossain, S., Kemler, V., & Khan, M. S. (2016). Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging. Waste Management, 55, 38–48. https://doi.org/10.1016/j.wasman.2016.02.035

    Article  CAS  Google Scholar 

  • Mao, D., Revil, A., Hort, R. D., Munakata-Marr, J., Atekwana, E. A., & Kulessa, B. (2015). Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments. Journal of Hydrology, 530, 1–14. https://doi.org/10.1016/j.jhydrol.2015.09.031

    Article  CAS  Google Scholar 

  • Martinho, E., & Almeida, F. (2006). 3D behavior of contamination in landfill sites using 2D resistivity/IP imaging: Case studies in Portugal. Environmental Geology, 49, 1071–1078.

    Article  Google Scholar 

  • Martinho, E., Abreu, M. M., Pampulha, M. E., Alegria, F., Oliveira, A., & Almeida, F. (2010). An experimental study of the diesel biodegradation effects on soil biogeophysical parameters. Water, Air & Soil Pollution, 206, 139–154.

    Article  CAS  Google Scholar 

  • Martinho, E., Abreu, M. M., Oliveira, A., Alegria, F., & Pampulha, M. E. (2013). Monitoring of biophysicochemical changes in a silty clay soil contaminated with LNAPLs. Geoderma, 197–198, 108–116.

    Article  Google Scholar 

  • Martinho, E., Almeida, F., & Senos Matias, M. J. (2004). Time domain induced polarization in determination of the salt/freshwater interface (Aveiro – Portugal). Groundwater Saline Intrusion, 18th Salt Water Intrusion Meeting, Cartagena, 2004, Spain, pp. 385–393.

  • Maurya, P. K., Rønde, V. K., Fiandaca, G., Balbarini, N., Auken, E., Bjerg, P. L., & Christiansen, A. V. (2017). Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography - with correlation to ionic strength measured in screens. Journal of Applied Geophysics, 138, 1–8. https://doi.org/10.1016/j.jappgeo.2017.01.019

    Article  Google Scholar 

  • McInnis, D., Silliman, S., Boukari, M., Yalo, N., Orou-Pete, S., Fertenbaugh, C., Sarre, K., & Fayomi, H. (2013). Combined application of electrical resistivity and shallow groundwater sampling to assess salinity in a shallow coastal aquifer in Benin, West Africa. Journal of Hydrology, 505, 335–345. https://doi.org/10.1016/j.jhydrol.2013.10.014

    Article  CAS  Google Scholar 

  • Mendecki, M. J., Warchulski, R., Szczuka, M., Środek, D., & Pierwoła, J. (2020). Geophysical and petrological studies of the former lead smelting waste dump in Sławków. Poland. Journal of Applied Geophysics, 179, 104080. https://doi.org/10.1016/j.jappgeo.2020.104080

    Article  Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  CAS  Google Scholar 

  • Mollehuara-Canales, R., Kozlovskaya, E., Lunkka, J. P., Moisio, K., & Pedretti, D. (2021). Non-invasive geophysical imaging and facies analysis in mining tailings. Journal of Applied Geophysics, 192, 104402. https://doi.org/10.1016/j.jappgeo.2021.104402

    Article  Google Scholar 

  • Moreira, C. A., Carrara, A., Helene, L. P. I., Hansen, M. A. F., Filho, W. M., & Dourado, J. C. (2017). Electrical resistivity tomography (ERT) applied in the detection of inorgnic contaminants in suspended aquifer in Leme city (Brazil). Revista Brasileira De Geofísica, 35, 213–225.

    Article  Google Scholar 

  • Morrow, F. J., Ingham, M. R., & McConchie, J. A. (2010). Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. Journal of Hydrology, 389, 69–77. https://doi.org/10.1016/j.jhydrol.2010.05.022

    Article  CAS  Google Scholar 

  • Nassir, S. S. A., Loke, M. H., Lee, C. Y., & Nawawi, M. N. M. (2000). Salt-water intrusion mapping by geoelectrical imaging surveys. Geophysical Prospecting, 48, 647–661.

    Article  Google Scholar 

  • Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O., Ogilvy, R., Gisbert, J., Jorreto, S., & Pulido-Bosch,. (2009). Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics, 7, 377–390.

    Article  Google Scholar 

  • Oghenero, O. A., Felix, C. I., & Emmanuel, E. O. (2017). Saltwater Intrusion Appraisal of Shallow Aquifer in Burutu Area of the Western Niger Delta with 2D Electrical Resistivity Tomography. Journal of Applied Science and Environmental Management, 21, 372–377. https://doi.org/10.4314/jasem.v21i2.19

    Article  CAS  Google Scholar 

  • Ogilvy, R. D., Meldrum, P. I., Kuras, O., Wilkinson, P. B., Chambers, J. E., Sen, M., Pulido-Bosch, A., Gisbert, J., Jorreto, S., Frances, I., & Tsourlos, P. (2009). Automated monitoring of coastal aquifers with electrical resistivity tomography. Near Surface Geophysics, 7, 367–375.

    Article  Google Scholar 

  • Oiro, S., & Comte, J. C. (2019). Drivers, patterns and velocity of saltwater intrusion in a stressed aquifer of the East African coast: Joint analysis of groundwater and geophysical data in southern Kenya. Journal of African Earth Sciences, 149, 334–347. https://doi.org/10.1016/j.jafrearsci.2018.08.016

    Article  Google Scholar 

  • Olhoeft, G. R. (1985). Low-frequency electrical properties. Geophysics, 50, 2492–2503.

    Article  Google Scholar 

  • Olhoeft, G. R. (1992). Geophysical detection of hydrocarbon and organic chemical contamination. In: Bell RS, Ed., Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems _ SAGEEP 1992. Oakbrook, IL, 587 – 595.

  • Orozco, A. F., Kemna, A., Oberdörster, C., Zschornack, L., Leven, C., Dietrich, P., & Weiss, H. (2012). Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging. Journal Contaminant Hydrology, 136–137, 131–144. https://doi.org/10.1016/j.jconhyd.2012.06.001

    Article  CAS  Google Scholar 

  • Orozco, A. F., Gallistl, J., Steiner, M., Brandstätter, C., & Fellner, J. (2020). Mapping biogeochemically active zones in landfills with induced polarization imaging: The Heferlbach landfill. Waste Management, 107, 121–132. https://doi.org/10.1016/j.wasman.2020.04.001

    Article  CAS  Google Scholar 

  • Orozco, A. F., Ciampi, P., Katona, T., Censini, M., Papini, M. P., Deidda, G. P., & Cassiani, G. (2021). Delineation of hydrocarbon contaminants with multi-frequency complex conductivity imaging. Science of the Total Environment, 768, 144997. https://doi.org/10.1016/j.scitotenv.2021.144997

    Article  CAS  Google Scholar 

  • Osinowo, O. O., Falufosi, M. O., & Omiyale, E. O. (2018). Integrated electromagnetic (EM) and Electrical Resistivity Tomography (ERT) geophysical studies of environmental impact of Awotan dumpsite in Ibadan, southwestern Nigeria. Journal of African Earth Sciences, 140, 42–51. https://doi.org/10.1016/j.jafrearsci.2017.12.026

    Article  Google Scholar 

  • Park, S., Yi, M. J., Kim, J. H., & Shin, S. W. (2016). Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea. Journal of Applied Geophysics, 135, 1–7. https://doi.org/10.1016/j.jappgeo.2016.07.004

    Article  Google Scholar 

  • Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., & Nelson, P. H. (1978). Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics, 43, 588–609.

    Article  Google Scholar 

  • Perri, M. T., Cassiani, G., Gervasio, I., Deiana, R., & Binley, A. (2012). A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results. Journal of Applied Geophysics, 79, 6–16. https://doi.org/10.1016/j.jappgeo.2011.12.011

    Article  Google Scholar 

  • Personna, Y. R., Ntarlagiannis, D., Slater, L., Yee, N., O’Brien, M., & Hubbard, S. (2008). Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations. Journal of Geophysical Research, 113, G02020. https://doi.org/10.1029/2007JG000614

    Article  CAS  Google Scholar 

  • Pidlisecky, A., Moran, T., Hansen, B., & Knight, R. (2016). Electrical Resistivity Imaging of Seawater Intrusion into the Monterey Bay Aquifer System. Ground Water, 54, 255–261. https://doi.org/10.1111/gwat.12351

    Article  CAS  Google Scholar 

  • Power, C., Gerhard, J. I., Karaoulis, M., Tsourlos, P., & Giannopoulos, A. (2014). Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation. Journal of Contaminant Hydrology, 162–163, 27–46.

    Article  Google Scholar 

  • Power, C., Gerhard, J. I., Tsourlos, P., Soupios, P., Simyrdanis, K., & Karaoulis, M. (2015). Improved time-lapse electrical resistivity tomography monitoring of dense non-aqueous phase liquids with surface-to-horizontal borehole arrays. Journal of Applied Geophysics, 112, 1–13. https://doi.org/10.1016/j.jappgeo.2014.10.022

    Article  Google Scholar 

  • Revelle, R. (1941). Criteria for recognition of seawater in groundwaters. Transactions of the American Geophysical Union, 22, 593–597.

    Article  Google Scholar 

  • Revil, A. (2012). Spectral induced polarization of shaly sands: Influence of the electrical double layer. Water Resources Research, 48, W02517. https://doi.org/10.1029/2011WR011260

    Article  Google Scholar 

  • Revil, A., & Florsch, N. (2010). Determination of permeability from spectral induced polarization in granular media. Geophysical Journal International, 181, 1480–1498. https://doi.org/10.1111/j.1365-246X.2010.04573.x

    Article  Google Scholar 

  • Revil, A., Cathles, L. M., Losh, S., & Nunn, J. A. (1998). Electrical conductivity in shaly sands with geophysical applications. Journal of Geophysical Research, 103(B10), 925–936.

    Article  Google Scholar 

  • Revil, A., Karaoulis, M., Johnson, T., & Kemna, A. (2012). Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20, 617–658.

    Article  Google Scholar 

  • Rey, J., Martínez, J., Barberá, G. G., García-Aróstegui, J. L., García-Pintado, J., & Martínez-Vicente, D. (2013). Geophysical characterization of the complex dynamics of groundwater and seawater exchange in a highly stressed aquifer system linked to a coastal lagoon (SE Spain). Environmental Earth Sciences, 70, 2271–2282. https://doi.org/10.1007/s12665-013-2472-2

    Article  Google Scholar 

  • Reynolds, J. M. (1997). An Introduction to Applied and Environmental Geophysics (p. 796). England: John Wiley & Sons Ltd.

    Google Scholar 

  • Sainato, C. M., Losinno, B. N., & Malleville, H. J. (2010). Electrical resistivity tomography applied to detect contamination on a dairy farm in the Pampean region, Argentina. Near Surface Geophysics, 8, 163–172.

    Article  Google Scholar 

  • Sainato, C. M., Losinno, B. N., & Malleville, H. J. (2012). Assessment of contamination by intensive cattle activity through electrical resistivity tomography. Journal of Applied Geophysics, 76, 82–91.

    Article  Google Scholar 

  • Samsudin, A. R., Haryono, A., Hamzah, U., & Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: A case study from north Kelantan, Malaysia. Environmental Geology, 55, 1737–1743. https://doi.org/10.1007/s00254-007-1124-9

    Article  CAS  Google Scholar 

  • Sathish, S., Elango, L., Rajesh, R., & Sarma, V. S. (2011). Assessment of seawater mixing in a coastal aquifer by high resolution electrical resistivity tomography. International Journal of Environmental Science and Technology, 8, 483–492.

    Article  CAS  Google Scholar 

  • Satriani, A., Loperte, A., Imbrenda, V., & Lapenna, V. (2012). Geoelectrical surveys for characterization of the coastal saltwater intrusion in metapontum forest reserve (Southern Italy). International Journal of Geophysics, 2012, 1–8. https://doi.org/10.1155/2012/238478

    Article  Google Scholar 

  • Sauck, W. A. (2000). A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments. Journal of Applied Geophysics, 44, 151–165.

    Article  Google Scholar 

  • Sauck, W. A., & McNeil, J. (1994). Some problems associated with GPR detection of hydrocarbon plumes. Abstracts for Poster Papers. Fifth International Conference on Ground Penetrating Radar (GPR 1994). Kitchener, Ontario, Canada, p. 34.

  • Schmutz, M., Revil, A., Vaudelet, P., Batzle, M., Femenía Viñao, P., & Werkema, D. D. (2010). Influence of oil saturation upon spectral induced polarization of oil-bearing sands. Geophysical Journal International, 183, 211–224. https://doi.org/10.1111/j.1365-246X.2010.04751.x

    Article  Google Scholar 

  • Schwartz, N., & Furman, A. (2012). Spectral induced polarization signature of soil contaminated by organic pollutant: Experiment and modeling. Journal of Geophysical Research, 117(B10), B10203. https://doi.org/10.1029/2012JB009543

    Article  CAS  Google Scholar 

  • Seigel, H., Nabighian, M., Parasnis, D. S., & Vozoff, K. (2007). The early history of the induced polarization method. The Leading Edge, 3, 312–321.

    Article  Google Scholar 

  • Sharma, P. V. (1997). Environmental and engineering geophysics (p. 475). Cambridge University Press.

    Book  Google Scholar 

  • Singha, K., & Gorelick, S. M. (2005). Saline tracer visualized with three-dimensional electrical resistivity tomography: Field-scale spatial moment analysis. Water Resources Research, 41, W05023. https://doi.org/10.1029/2004WR003460

    Article  CAS  Google Scholar 

  • Sodde, M., & Barrocu, G. (2006). Seawater intrusion and heavy metal contamination in the alluvial plain of Quirra and Flumini Pisale rivers, South-Eastern Sardinia. 1st SWIM-SWICA joint Saltwater intrusion Conference (pp. 24–29). Italy: Cagliari-Chia Laguna.

    Google Scholar 

  • Sogade, J. A., Scira-Scappuzzo, F., Vichabian, Y., Shi, W., Rodi, W., Lesmes, D. P., & Morgan, F. D. (2006). Induced-polarization detection and mapping of contaminant plumes. Geophysics, 71, B75–B84. https://doi.org/10.1190/1.2196873

    Article  Google Scholar 

  • Soupios, P., Papadopoulos, N., Papadopoulos, I., Kouli, M., Vallianatos, F., Sarris, A., & Manios, T. (2007). Application of integrated methods in mapping waste disposal areas. Environmental Geology, 53, 661–675. https://doi.org/10.1007/s00254-007-0681-2

    Article  Google Scholar 

  • Sparrenbom, C. J., Åkesson, S., Johansson, S., Hagerberg, D., & Dahlin, T. (2017). Investigation of chlorinated solvent pollution with resistivity and induced polarization. Science of the Total Environment, 575, 767–778. https://doi.org/10.1016/j.scitotenv.2016.09.11

    Article  CAS  Google Scholar 

  • Sumi, F. (1961). The induced polarization method in ore investigation. Geophysical Prospecting, 9, 459–477.

    Article  Google Scholar 

  • Sumner, J. S. (1976). Principles of Induced Polarization for Geophysical Exploration (p. 277). Elsevier Scientific Publishers.

    Google Scholar 

  • Titov, K., Komarov, V., Tarasov, V., & Levitski, A. (2002). Theoretical and experimental study of time domain-induced polarization in water-saturated sands. Journal of Applied Geophysics, 50, 417–433.

    Article  Google Scholar 

  • Trento, L. M., Tsourlos, P., & Gerhard, J. I. (2021). Time-lapse electrical resistivity tomography mapping of DNAPL remediation at a STAR field site. Journal of Applied Geophysics, 184, 104244. https://doi.org/10.1016/j.jappgeo.2020.104244

    Article  Google Scholar 

  • Vanhala, H. (1997). Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method. Geophysical Prospecting, 45, 303–326.

    Article  Google Scholar 

  • Vanhala, H., Soininen, H., & Kukkonen, I. (1992). Detecting organic chemical contaminants by spectral induced polarization method in glacial till environment. Geophysics, 57, 1014–1017.

    Article  Google Scholar 

  • Vargemezis, G., Tsourlos, P., Giannopoulos, A., & Trilyrakis, P. (2015). 3D electrical resistivity tomography technique for the investigation of a construction and demolition waste landfill site. Studia Geophysica Geodaetica, 59, 461–476. https://doi.org/10.1007/s11200-014-0146-5

    Article  Google Scholar 

  • Vaudelet, P., Schmutz, M., Pessel, M., Franceschi, M., Guérin, R., Atteia, O., Blondel, A., Ngomseu, C., Galaup, S., Rejiba, F., & Bégassat, P. (2011). Mapping of contaminant plumes with geoelectrical methods. A case study in urban context. Journal of Applied Geophysics, 75, 738–751. https://doi.org/10.1016/j.jappgeo.2011.09.023

    Article  Google Scholar 

  • Vinegar, H., & Waxman, M. (1982). Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain, U.S. Patent nº 4: 359, 687.

  • Vinegar, H., & Waxman, M. (1984). Induced polarization of shaly sands. Geophysics, 49(8), 1267–1287. https://doi.org/10.1190/1.1441755

    Article  Google Scholar 

  • Wang, T. P., Chen, C. C., Tong, L. T., Chang, P. Y., Chen, Y. C., Dong, T. H., Liu, H. C., Lin, C. P., Yang, K. H., Ho, C. J., & Cheng, S. N. (2015). Applying FDEM, ERT and GPR at a site with soil contamination: A case study. Journal of Applied Geophysics, 121, 21–30. https://doi.org/10.1016/j.jappgeo.2015.07.005

    Article  Google Scholar 

  • Williams, K. H., Ntarlagiannis, D., Slater, L. D., Dohnalkova, A., Hubbard, S. S., & Banfield, J. F. (2005). Geophysical imaging of stimulated microbial biomineralization. Environmental Science & Technology, 39, 7592–7600.

    Article  CAS  Google Scholar 

  • Wilson, S. R., Ingham, M., & McConchie, J. A. (2006). The applicability of earth resistivity methods for saline interface definition. Journal of Hydrology, 316, 3012–3312. https://doi.org/10.1016/j.jhydrol.2005.05.004

    Article  Google Scholar 

  • Wong, J. (1979). An electrochemical model of the induced polarization phenomenon in disseminated sulfide ores. Geophysics, 44, 1245–1265.

    Article  CAS  Google Scholar 

  • Yang, C. H., Yu, C. Y., & Su, S. W. (2007). High resistivities associated with a newly formed LNAPL plume imaged by geoelectric techniques: A case study. Journal of the Chinese Institute of Engineers, 30, 53–62. https://doi.org/10.1080/02533839.2007.9671230

    Article  CAS  Google Scholar 

  • Yusuf, M. A., & Abiye, T. A. (2019). Risks of groundwater pollution in the coastal areas of Lagos, southwestern Nigeria. Groundwater for Sustainable Development, 9, 100222. https://doi.org/10.1016/j.gsd.2019.100222

    Article  Google Scholar 

  • Zarroca, M., Bach, J., Linares, R., & Pellicer, X. M. (2011). Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). Journal of Hydrology, 409, 407–422. https://doi.org/10.1016/j.jhydrol.2011.08.052

    Article  CAS  Google Scholar 

  • Zohdy, A. A. R., & Martin, P. (1993). A study of seawater intrusion using direct-current soundings in the Southeastern part of the Oxnard plain. California. Open-File Report, 93–524, 26.

    Google Scholar 

Download references

Acknowledgements

Edite Martinho gratefully acknowledges the support of the Centro de Recursos Naturais e Ambiente (CERENA): strategic project Fundação para a Ciência e Tecnologia (FCT) – UIDB/04028/2020).

Funding

This work was supported by CERENA (strategic project FCT – UIDB/04028/2020).

Author information

Authors and Affiliations

Authors

Contributions

Edite Martinho had the idea for the article, performed the literature search, data analysis, and drafted and critically revised the work.

Corresponding author

Correspondence to Edite Martinho.

Ethics declarations

Ethical Approval

This manuscript was not submitted to more than one journal for simultaneous consideration. The submitted work is original and has not been published elsewhere in any form or language (partially or in full). This manuscript was not split up into several parts. Results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. No data, text, or theories by others are presented as if they were the author’s own. Proper acknowledgments to other works are given, and quotation marks were clearly identified.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinho, E. Electrical Resistivity and Induced Polarization Methods for Environmental Investigations: an Overview. Water Air Soil Pollut 234, 215 (2023). https://doi.org/10.1007/s11270-023-06214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06214-x

Keywords

Navigation