Skip to main content

Advertisement

Log in

Soot Aerosols from Wheat Stubble Burning Lead to Ice Nucleation and Heavy Rainfall Over Arid Rajasthan, India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the Indo-Gangetic Plains, extensive crop residue burning (CRB) of wheat stubble is done during the month of May. Soot emitted following CRB, a serious environmental pollutant, affects cloud properties. Though important, it is poorly understood as an ice nucleating particle. During the summer season, on 13 May 2020, an unusually heavy rainfall event occurred over Rajasthan, India, which was studied using ground- and satellite-data. The sun photometer observations of the AERONET station on 12 May 2020 yielded an absorption Ångstorm exponent value of 1.01. This value corresponds to black carbon (BC) and indicates its dominance as a fine aerosol associated with CRB. The HYSPLIT model indicated a downwind trajectory towards Rajasthan from Haryana and Punjab (source of CRB). Atmospheric ageing and oxygenation of BC probably increased the number of hydrophilic surface sites. Thus, soot comprising BC particles got activated into cloud droplets through the heterogeneous nucleation of water vapour. As a result, the prevailing sub-saturation condition with 80% RH led to the wetting of BC particles through the nucleation of water vapour and increased ice concentration in the cloud anvils in the late night of 12 May 2020 and precipitated on 13 May 2020 (up to 58.2 mm). AERONET data highlights that the region had an abundance of BC produced from CRB. Apart from its water affinity, other particle characteristics such as porosity and polarity also augmented ice nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study. The authors confirm that relevant information is included in the article and/or its supplementary information files. Source data for figures is provided in the paper.

We declare that the submission of this article implies that the work described has not been published previously and that it is not under consideration for publication elsewhere. We declare that the publication, if accepted, will not be published elsewhere in the same form, in English or any other language including electronically, without the written consent of the copyright holder.

References 

  • Abdurrahman, M. I., Chaki, S., & Saini, G. (2020). Stubble burning: Effects on health & environment, regulations and management practices. Environmental Advances, 2, 100011.

    Article  Google Scholar 

  • Agarwal, R., Awasthi, A., Singh, N., Gupta, P. K., & Mittal, S. K. (2012). Effects of exposure to rice-crop residue burning smoke on pulmonary functions and oxygen saturation level of human beings in Patiala (India). Science of the Total Environment, 429, 161–166. https://doi.org/10.1016/j.scitotenv.2012.03.074

    Article  CAS  Google Scholar 

  • Aminou, D. M. A. (2002). MSG’s SEVIRI Instrument. European Science Agency Bulletin, 111, 15–17.

    Google Scholar 

  • Andreae, M. O., & Rosenfeld, D. (2008). Aerosol-cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Science Reviews, 89, 13–41.

    Article  Google Scholar 

  • Bhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. (2019). Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 16, 832.

    Article  CAS  Google Scholar 

  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research - d: Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Cao, X., Liang, J., Tian, P., Zhang, L., Quan, X., & Liu, W. (2014). The mass concentration and optical properties of black carbon aerosols over a semi–arid region in the northwest of China. Atmospheric Pollution Research, 5, 601–609. https://doi.org/10.5094/APR.2014.069

    Article  CAS  Google Scholar 

  • Chawala, P., & Sandhu, H. A. S. (2020). Stubble burn area estimation and its impact on ambient air quality of Patiala & Ludhiana district, Punjab. India. Heliyon, 6, e03095.

    Article  Google Scholar 

  • Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A. B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M., & Prather, K. A. (2013). Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 1572–1578. https://doi.org/10.1126/science.1227279

    Article  CAS  Google Scholar 

  • Crouzet, Y., & Marlow, W. H. (1995). Calculations of the equilibrium vapor pressure of water over adhering 50–200-nm spheres. Aerosol Science and Technology, 22, 43–59.

    Article  CAS  Google Scholar 

  • Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M. E., DeFries, R. S., Guttikunda, S. K., & Gupta, P. (2018). Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi. India. Environment Research Letters, 13, 044018. https://doi.org/10.1088/1748-9326/aab303

    Article  CAS  Google Scholar 

  • David, R. O., Marcolli, C., Fahrni, J., Qiu, Y., Perez Sirkin, Y. A., Molinero, V., Mahrt, F., Brühwiler, D., Lohmann, U., & Kanji, Z. A. (2019). Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proceedings National Academy of Sciences USA, 116, 8184–8189.

    Article  CAS  Google Scholar 

  • de Tomasi, F., & Perrone, M. R. (2003). Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy. Journal of Geophysical Research Atmosphere, 108, 4286. https://doi.org/10.1029/2002JD002781

    Article  Google Scholar 

  • Deep, A., Pandey, C. P., Nandan, H., Singh, N., Yadav, G., Joshi, P. C., Purohit, K. D., & Bhatt, S. C. (2021). Aerosols optical depth and Ångström exponent over different regions in Garhwal Himalaya. India. Environmental Monitoring and Assessment, 193, 324. https://doi.org/10.1007/s10661-021-09048-4

    Article  Google Scholar 

  • Desouza, N. D., & Blaise, D. (2020). Impact of aerosols on deep convective clouds using integrated remote sensing techniques. Air Quality, Atmosphere and Health, 13, 815–825. https://doi.org/10.1007/s11869-020-00838-2

    Article  CAS  Google Scholar 

  • Domingo-García, M., López-Garzón, F. J., & Pérez-Mendoza, M. (2000). Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon. Journal of Colloid and Interface Science, 222, 233–240. https://doi.org/10.1006/jcis.1999.6619

    Article  CAS  Google Scholar 

  • Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research Atmospheres, 104, 31333–31349. https://doi.org/10.1029/1999JD900923

    Article  Google Scholar 

  • Falk, J., Korhonen, K., Malmborg, V. B., Gren, L., Eriksson, A. C., Karjalainen, P., Markkula, L., Bengtsson, P. E., Virtanen, A., Svenningsson, B., Pagels, J., & Kristensen, T. B. (2021). Immersion freezing ability of freshly emitted soot with various physico-chemical characteristics. Atmosphere, 12, 1173. https://doi.org/10.3390/atmos12091173

    Article  Google Scholar 

  • Friedman, B., Kulkarni, G., Beránek, J., Zelenyuk, A., Thornton, J. A., & Cziczo, D. J. (2011). Ice nucleation and droplet formation by bare and coated soot particles. Journal of Geophysical Research, 116, D17203. https://doi.org/10.1029/2011JD015999

    Article  CAS  Google Scholar 

  • Gao, Y., & Zhang, M. (2018). Changes in the diurnal variations of clouds and precipitation induced by anthropogenic aerosols over East China in August 2008. Atmospheric Pollution Research, 9, 513–525. https://doi.org/10.1016/j.apr.2017.11.013

    Article  CAS  Google Scholar 

  • Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., Pfister, G. G., Fadnavis, S., & Pithani, P. (2016). Premature mortality in India due to PM 2.5 and ozone exposure. Geophysical Research Letters, 43, 4650–4658. https://doi.org/10.1002/2016GL068949

    Article  CAS  Google Scholar 

  • Gomes, L., Miranda, H. S., Soares-Filho, B., Rodrigues, L., Oliveira, U., & Bustamante, M. M. C. (2020). Responses of plant biomass in the Brazilian savanna to frequent fires. Frontiers in Forests and Global Change, 3, 507710. https://doi.org/10.3389/ffgc.2020.507710

    Article  Google Scholar 

  • Hagihara, Y., Okamoto, H., & Luo, Z. J. (2014). Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics. Journal of Geophysical Research Atmospheres, 119, 4087–4106.

    Article  Google Scholar 

  • Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5

    Article  Google Scholar 

  • Holben, B. N., Tanre, D., Smirnov, A., Eck, T., Slutsker, I., Abuhassan, N., Newcomb, W., Schafer, J., Chatenet, B., Lavenu, F., Kaufman, Y., Castle, J. V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research, 106, 12067–12097.

    Article  Google Scholar 

  • Hoose, C., & Möhler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics, 12, 9817–9854.

    Article  CAS  Google Scholar 

  • IMD. (2020). All India Weather Summary and Forecast Bulletin, 15 May 2020. National Weather Forecasting Centre, India Meteorological Department, New Delhi. https://www.imd.gov.in

  • Jain, N., Bhatia, A., & Pathak, H. (2014). Emission of air pollutants from crop residue burning in India. Aerosol Air Quality Research, 14, 422–430. https://doi.org/10.4209/aaqr.2013.01.0031

    Article  CAS  Google Scholar 

  • Jat, M. L., Chakraborty, D., Ladha, J. K., Rana, D. S., Gathala, M. K., McDonald, A., & Gerard, B. (2020). Conservation agriculture for sustainable intensification in South Asia. Nature Sustainability, 3, 336–343.

    Article  Google Scholar 

  • Jethva, H., Chand, D., Torres, O., Gupta, P., Lyapustin, A., & Patadia, F. (2018). Agricultural burning and air quality over northern India: A synergistic analysis using NASA’s A-train satellite data and ground measurements. Aerosol Air Quality Research, 18, 1756–1773.

    Article  Google Scholar 

  • Jing, F., & Singh, R. P. (2020). Optical properties of dust and crop burning emissions over India using ground and satellite data. Science of the Total Environment, 718, 134476.

    Article  CAS  Google Scholar 

  • Jones, J. M., Ross, A. B., & Williams, A. (2005). Atmospheric chemistry implications of the emission of biomass smoke. Journal of the Energy Institute, 78, 199–200.

    Article  CAS  Google Scholar 

  • Kalinga, O. A., & Gan, T. Y. (2010). Estimation of rainfall from infrared-microwave satellite data for basin scale hydrologic modeling. Hydrological Processes, 24, 2068–2086.

    Google Scholar 

  • Kaskaoutis, D. G., Kumar, S., Sharma, D., Singh, R. P., Kharol, S. K., Sharma, M., Singh, A. K., Singh, S., Singh, A., & Singh, D. (2014). Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. Journal of Geophysical Research Atmospheres, 119, 5424–5444.

    Article  Google Scholar 

  • Koehler, K. A., DeMott, P. J., Kreidenweis, S. M., Popovicheva, O. B., Petters, M. D., Carrico, C. M., Kireeva, E. D., Khokhlova, T. D., & Shonija, N. K. (2009). Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles. Physical Chemistry Chemical Physics, 11, 7906–7920. https://doi.org/10.1039/b905334b

    Article  CAS  Google Scholar 

  • Koren, I. (2004). Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science, 303, 1342–1345. https://doi.org/10.1126/science.1089424

    Article  CAS  Google Scholar 

  • Kumari, S., Lakhani, A., & Kumari, K. M. (2020). Transport of aerosols and trace gases during dust and crop-residue burning events in Indo-Gangetic Plain: Influence on surface ozone levels over downwind region. Atmospheric Environment, 241, 117829. https://doi.org/10.1016/j.atmosenv.2020.117829

    Article  CAS  Google Scholar 

  • Levin, E. J. T., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Carrico, C. M., Nakao, S., et al. (2016). Ice-nucleating particle emissions from biomass combustion and the potential importance of soot aerosol. Journal of Geophysical Research: Atmospheres, 121, 5888–5903. https://doi.org/10.1002/2016JD024879

    Article  Google Scholar 

  • Li, Y., Tan, H., Wang, X., Bai, S., Mei, J., You, X., Ruan, R., & Yang, F. (2018). Characteristics and mechanism of soot formation during the fast pyrolysis of biomass in an entrained flow reactor. Energy & Fuels, 32, 11477–11488. https://doi.org/10.1021/acs.energyfuels.8b00752

    Article  CAS  Google Scholar 

  • Liu, X. (2002). Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model. Journal of Geophysical Research, 107, 4141.

    Article  Google Scholar 

  • Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A. P., Shi, Z., Lv, S., Niu, H., Shao, L., Hu, M., Zhang, D., Chen, J., Zhang, X., & Li, W. (2017). Morphology, composition, and mixing state of primary 334 particles from combustion sources - Crop residue, wood, and solid waste. Scientific Reports, 7, 5047. https://doi.org/10.1038/s41598-017-05357-2

    Article  CAS  Google Scholar 

  • Ma, Y., Chen, C., Wang, J., Jiang, Y., Zheng, Z., Chen, H., & Zheng, J. (2019). Evolution in physiochemical and cloud condensation nuclei activation properties of crop residue burning particles during photochemical aging. Journal of Environmental Sciences, 77, 43–53.

    Article  CAS  Google Scholar 

  • Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., & Kanji, Z. A. (2018). Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber. Atmospheric Chemistry and Physics, 18, 13363–13392. https://doi.org/10.5194/acp-18-13363-2018

    Article  CAS  Google Scholar 

  • Marcolli, C. (2014). Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmospheric Chemistry and Physics, 14, 2071–2104. https://doi.org/10.5194/acp-14-2071-2014

    Article  CAS  Google Scholar 

  • McGraw, Z., Storelvmo, T., Samset, B. H., & Stjern, C. W. (2020). Global radiative impacts of black carbon acting as ice nucleating particles. Geophysical Research Letters, 47, e2020GL089056.

    Article  CAS  Google Scholar 

  • Moore, R. A., Bomar, C., Kobziar, L. N., & Christner, B. C. (2021). Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. ISME Journal, 15, 461–472. https://doi.org/10.1038/s41396-020-00788-8

    Article  CAS  Google Scholar 

  • Murray, B. J., O’Sullivan, D., Atkinson, J. D., & Webb, M. E. (2012). Ice nucleation by particles immersed in supercooled cloud droplets. Chemical Society Reviews, 41, 6519–6554. https://doi.org/10.1039/c2cs35200a

    Article  CAS  Google Scholar 

  • Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R. E., & Liu, Z. (2009). The CALIPSO automated aerosol classification and Lidar ratio selection algorithm. Journal of Atmospheric and Oceanic Technology, 26, 1994–2014. https://doi.org/10.1175/2009JTECHA1231.1

    Article  Google Scholar 

  • Pandey, R., & Vyas, B. M. (2004). Study of total column ozone, precipitable water content and AOD at Udaipur, a tropical station. Current Science, 86, 305.

    CAS  Google Scholar 

  • Petters, M. D., Parsons, M. T., Prenni, A. J., DeMott, P. J., Kreidenweis, S. M., Carrico, C. M., Sullivan, A. P., McMeeking, G. R., Levin, E., Wold, C. E., Collett, J. L., & Moosmüller, H. (2009). Ice nuclei emissions from biomass burning. Journal of Geophysical Research, 114, D07209. https://doi.org/10.1029/2008JD011532

    Article  CAS  Google Scholar 

  • Pruppacher, H. R., & Klett, J. D. (2010). Microphysics of clouds and precipitation. Springer, Netherlands. https://doi.org/10.1007/978-0-306-48100-0

    Article  Google Scholar 

  • Reichardt, J., Ansmann, A., Serwazi, M., Weitkamp, C., & Michaelis, W. (1996). Unexpectedly low ozone concentration in midlatitude tropospheric ice clouds: A case study. Geophysical Research Letters, 23, 1929–1932. https://doi.org/10.1029/96GL01856

    Article  CAS  Google Scholar 

  • Sawlani, R., Agnihotri, R., Sharma, C., Patra, P. K., Dimri, A. P., Ram, K., & Verma, R. L. (2019). The severe Delhi SMOG of 2016: A case of delayed crop residue burning, coincident fire cracker emissions, and atypical meteorology. Atmospheric Pollution Research, 10, 868–879. https://doi.org/10.1016/j.apr.2018.12.015

    Article  CAS  Google Scholar 

  • Schuster, G. L., Dubovik, O., Arola, A., Eck, T. F., & Holben, B. N. (2016). Remote sensing of soot carbon – Part 2: Understanding the absorption Ångström exponent. Atmospheric Chemistry and Physics, 16, 1587–1602.

    Article  CAS  Google Scholar 

  • Thumaty, K. C., Rodda, S. R., Singhal, J., Gopalakrishnan, R., Jha, C. S., Parsi, G. D., & Dadhwal, V. K. (2015). Spatio-temporal characterization of agriculture residue burning in Punjab and Haryana, India, using MODIS and Suomi NPP VIIRS Data. Current Science, 109, 1850.

    Article  Google Scholar 

  • Trubetskaya, A., Brown, A., Tompsett, G. A., Timko, M. T., Kling, J., Broström, M., Andersen, M. L., & Umeki, K. (2018). Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Applied Energy, 212, 1489–1500.

    Article  CAS  Google Scholar 

  • Weingartner, E., Burtscher, H., & Baltensperger, U. (1997). Hygroscopic properties of carbon and diesel soot particles. Atmospheric Environment, 31, 2311–2327. https://doi.org/10.1016/S1352-2310(97)00023-X

    Article  CAS  Google Scholar 

  • Wong, Y. J., Shiu, H.-Y., Chang, J.H.-H., Ooi, M. C. G., Li, H.-H., Homma, R., Shimizu, Y., Chiueh, P.-T., Maneechot, L., & Sulaiman, N. M. N. (2022). Spatiotemporal impact of COVID-19 on Taiwan air quality in the absence of a lockdown: Influence of urban public transportation use and meteorological conditions. Journal of Cleaner Production, 365, 132893. https://doi.org/10.1016/j.jclepro.2022.132893

    Article  CAS  Google Scholar 

  • Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., & Zhou, M. (2006). A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 6, 613–666.

    Article  CAS  Google Scholar 

  • Yun, Y., Penner, J. E., & Popovicheva, O. (2013). The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed-phase clouds. Atmospheric Chemistry and Physics, 13, 4339–4348.

    Article  Google Scholar 

  • Zawadzka, O., & Markowicz, K. (2014). Retrieval of aerosol optical depth from optimal interpolation approach applied to SEVIRI data. Remote Sensing, 6, 7182–7211.

    Article  Google Scholar 

  • Zhang, Y., Yu, F., Luo, G., Fan, J., & Liu, S. (2021). Impacts of long-range transported mineral dust on summertime convective cloud and precipitation: A case study over the Taiwan region. Atmospheric Chemistry and Physics, 21, 17433–17451.

    Article  CAS  Google Scholar 

  • Zhang, S., Huang, Z., Li, M., Shen, X., Wang, Y., Dong, Q., Bi, J., Zhang, J., Li, W., Li, Z., & Song, X. (2022). Vertical structure of dust aerosols observed by a ground-based Raman Lidar with polarization capabilities in the center of the Taklimakan Desert. Remote Sensing, 14, 2461.

    Article  Google Scholar 

  • Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X., Huang, L., & Yung, Y. L. (2019). Ice nucleation by aerosols from anthropogenic pollution. Nature Geosciences, 12, 602–607. https://doi.org/10.1038/s41561-019-0389-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements 

We acknowledge with sincere gratitude the AERONET data provided by Dr. Brent Holben, NASA, USA, and Dr. Panuganti C.S. Devara, Principal Investigator of the AERONET Station, Amity University, Gurgaon, India. Weather data for the other locations were retrieved from https://www.weatheronline.in/weather/maps/city. We are grateful to the National Aeronautical Space Agency (NASA), the National Oceanic and Atmospheric Administration (NOAA), and the National Snow and Ice Data Centre (NSIDC) for the use of MODIS and CALIPSO images, the EOSDIS data, and the access to Panoply Software. We appreciate the European Organization for Exploitation of Meteorological Satellites (EUMETSAT) for the satellite-derived data from Meteosat Second Generation. We are also grateful to the India Meteorological Department and the Ministry of Water Resources, Government of Rajasthan, for the rainfall data from the ground-based meteorological weather stations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Blaise.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2412 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desouza, N.D., Blaise, D. & Velmourougane, K. Soot Aerosols from Wheat Stubble Burning Lead to Ice Nucleation and Heavy Rainfall Over Arid Rajasthan, India. Water Air Soil Pollut 234, 200 (2023). https://doi.org/10.1007/s11270-023-06213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06213-y

Keywords

Navigation