Skip to main content

Advertisement

Log in

Modeling Nitrogen Balance for Pre-Assessment of Surface and Groundwater Nitrate (NO3-−N) Contamination from N–Fertilizer Application Loss: a Case of the Bilate Downstream Watershed Cropland

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrogen is an essential plant nutrient, but in excess amounts in the soil can cause significant water quality problems. Since nitrate is very soluble and is not retained by soil, it easily leaches into groundwater and contaminates it. Therefore, modeling nitrate concentration derived from N-fertilizer in the area where the land dominating crop coverage helps to ensure the security of soil and water and also the environmental sustainability actions in the agricultural watershed. Adding N-fertilizer without understanding the concentration of nitrates in the soil and neglecting responsibilities and lacking concern of excess application of nitrogen N fertilizers on agriculture can cause further problems on groundwater resources. In order to evaluate nitrate contamination on surface water and groundwater, estimating partial nitrogen balance (PNB) in crop land is essential. The objective of this study was to model the crop land partial nitrogen balance (PNB) for pre-assessment of nitrate contamination in the downstream of Bilate watershed crop land based on agricultural field N-fertilizer application loss in a scenario within Bilate watershed. The loss of agricultural nitrogen fertilizer in the Bilate watershed is one of the major factors that may contribute to nitrate contamination in the downstream water bodies in Bilate watershed. Geographically weighted regression (GWR) model with (EO-MODIS 250 m-NDVI) and time series cropland from (MODIS-MCD12Q1-IGBP of crop land class) has been utilized. Field crop data using GPS is collected from the upper, middle, and lower parts of watershed confirming the IGBP crop land classification (0.92 kappas) has scored. Additionally, the (MODIS 250 m–NDVI) data observation has been calibrated by the Google Earth Engine using a machine learning approach. Based on the FAO-Agricultural Stress Index System (ASIS), crop growth phonology curves value interval has been indexed, and simulated crop growth index has been validated for 0.25 min and 0.75 max crop growth curves. The results were utilized to replicate the time series heterogeneous crop pattern on crop land NDVI mean zonal statics. For last 20 years, a partial nitrogen balance for observed nitrogen application (Nkg/ha/year−1) and crop N uptake (Nkg/ha/year−1) is predicted. For the simulated outcome, the model has been verified for its linear correlation value of (R2 of 0.9986). The idea underlying this research is based on the scientific fact that nitrogen (NO3-N) contamination of surface and subsurface water is unattainable without knowledge of the nitrogen level above the root zone to the particular crop zonal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The data that support the findings of this research are available from the corresponding author, “Bereket Geberselassie Assa,” upon reasonable request.

References

  • Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. https://doi.org/10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  • Aduvukha, G. R., Abdel-Rahman, E. M., Sichangi, A. W., Makokha, G. O., Landmann, T., Mudereri, B. T., Tonnang, H. E. Z., & Dubois, T. (2021). Cropping pattern mapping in an agro-natural heterogeneous landscape using sentinel-2 and sentinel-1 satellite datasets. Agriculture (Switzerland), 11(6), 1–22. https://doi.org/10.3390/agriculture11060530

    Article  Google Scholar 

  • Anas, M., Liao, F., Verma, K. K., Sarwar, M. A., Mahmood, A., Chen, Z. L., Li, Q., Zeng, X. P., Liu, Y., & Li, Y. R. (2020). Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. In Biological Research (Vol. 53, Issue 1, pp. 1–20). BioMed Central. https://doi.org/10.1186/s40659-020-00312-4

  • APNI. (2022a). Annual Report 2021: Charting pathways. Retrieved from https://www.apni.net/annual-reports/. Accessed 30 Jun 2022

  • APNI. (2022b). Study targets N loss prediction across agricultural landscapes. https://www.apni.net/annual-reports/. Accessed 30 Jun 2022

  • Argento, F., Liebisch, F., Simmler, M., Ringger, C., Hatt, M., Walter, A., & Anken, T. (2022). Linking soil N dynamics and plant N uptake by means of sensor support. European Journal of Agronomy, 134, 126462. https://doi.org/10.1016/j.eja.2022.126462

    Article  CAS  Google Scholar 

  • Aziiba, E. A., Qiang, C., & Coulter, J. A. (2019). Mechanisms of nitrogen use in maize. Agronomy, 9(12), 1–16. https://doi.org/10.3390/agronomy9120775

    Article  CAS  Google Scholar 

  • Barzin, R., Lotfi, H., Varco, J. J., & Bora, G. C. (2022). Machine learning in evaluating multispectral active canopy sensor for prediction of corn leaf nitrogen concentration and yield. Remote Sensing, 14(1), 1–17. https://doi.org/10.3390/rs14010120

    Article  Google Scholar 

  • Bedri, Z., & Bruen, M. (2009). ARROW @ TU Dublin catchment modelling tools and pathways review UCD centre for water resources research. 0–222.

  • Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., & Melese, A. M. (2017). Analysis of rainfall trend and variability for agricultural water management in awash river Basin, Ethiopia. Journal of Water and Climate Change, 8(1), 127–141. https://doi.org/10.2166/wcc.2016.044

    Article  Google Scholar 

  • Bertinetto, C., Engel, J., & Jansen, J. (2020). ANOVA simultaneous component analysis: A tutorial review. Analytica Chimica Acta: X, 6, 100061. https://doi.org/10.1016/j.acax.2020.100061

    Article  CAS  Google Scholar 

  • Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Applied Sciences, 3(4), 1–24. https://doi.org/10.1007/s42452-021-04521-8

    Article  CAS  Google Scholar 

  • Bosso, L., Scelza, R., Testa, A., Cristinzio, G., & Rao, M. A. (2015). Depletion of pentachlorophenol contamination in an agricultural soil treated with Byssochlamys nivea, Scopulariopsis brumptii and urban waste compost: A laboratory microcosm study. Water, Air, and Soil Pollution, 226(6), 1–9. https://doi.org/10.1007/s11270-015-2436-0

    Article  CAS  Google Scholar 

  • Bosso, L., Scelza, R., Varlese, R., Meca, G., Testa, A., Rao, M. A., & Cristinzio, G. (2016). Assessing the effectiveness of Byssochlamys nivea and Scopulariopsis brumptii in pentachlorophenol removal and biological control of two Phytophthora species. Fungal Biology, 120(4), 645–653. https://doi.org/10.1016/j.funbio.2016.01.004

    Article  Google Scholar 

  • Bossung, C., Schlerf, M., & Machwitz, M. (2022). Estimation of canopy nitrogen content in winter wheat from Sentinel-2 images for operational agricultural monitoring. Precision Agriculture, 0123456789. https://doi.org/10.1007/s11119-022-09918-y

  • Boy-Roura, M. (2013). Nitrate groundwater pollution and aquifer vulnerability : The case of the Osona region nitrate groundwater pollution and aquifer vulnerability : The case of the Osona region.

  • Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791–811. https://doi.org/10.1007/s11119-021-09861-4

    Article  CAS  Google Scholar 

  • Cameira, M. R., Rolim, J., Valente, F., Faro, A., Dragosits, U., & Cordovil, C. M. D. S. (2019). Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal—Implications for effectiveness of mitigation measures. Land Use Policy, 84(September 2018), 278–293. https://doi.org/10.1016/j.landusepol.2019.02.028

    Article  Google Scholar 

  • Cao, P., Lu, C., & Yu, Z. (2018). Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: Application rate, timing, and fertilizer types. Earth System Science Data, 10(2), 969–984. https://doi.org/10.5194/essd-10-969-2018

    Article  Google Scholar 

  • Caribou Space, D. T. (Senior D. and N. B. (2020). Adoption and impact of earth observation for the 2030 agenda for sustainable development. www.caribou.space

  • Cassman, K. G., & Dobermann, A. (2022). Nitrogen and the future of agriculture: 20 years on: This article belongs to Ambio’s 50th Anniversary Collection. Theme: Solutions-oriented research. Ambio, 51(1), 17–24. https://doi.org/10.1007/s13280-021-01526-w

    Article  Google Scholar 

  • Chen, X.-y, Lin, Y., Zhang, M., Yu, L., Li, H.-c, & Bai, Y.-q. (2017). Assessment of the cropland classifications in four global land cover datasets: A case study of Shaanxi Province, China. Journal of Integrative Agriculture, 16(2), 298–311. https://doi.org/10.1016/S2095-3119(16)61442-9

    Article  Google Scholar 

  • Chen, Z., Zhang, S., Geng, W., Ding, Y., & Jiang, X. (2022). Use of Geographically Weighted Regression (GWR) to reveal spatially varying relationships between Cd accumulation and soil properties at field scale. Cd.

  • Chowdhury, M. A. H., Sultana, T., Rahman, M. A., Chowdhury, T., Enyoh, C. E., Saha, B. K., & Qingyue, W. (2020). Nitrogen use efficiency and critical leaf N concentration of aloe vera in urea and diammonium phosphate amended soil. Heliyon, 6(12), e05718. https://doi.org/10.1016/j.heliyon.2020.e05718

    Article  Google Scholar 

  • Clagnan, E., Thornton, S. F., Rolfe, S. A., Wells, N. S., Knoeller, K., Murphy, J., Tuohy, P., Daly, K., Healy, M. G., Ezzati, G., von Chamier, J., & Fenton, O. (2019). An integrated assessment of nitrogen source, transformation and fate within an intensive dairy system to inform management change. PLoS ONE, 14(7), 1–22. https://doi.org/10.1371/journal.pone.0219479

    Article  CAS  Google Scholar 

  • Clement, F., Orange, D., Williams, M., Mulley, C., & Epprecht, M. (2009). Drivers of afforestation in Northern Vietnam: Assessing local variations using geographically weighted regression. Applied Geography, 29(4), 561–576. https://doi.org/10.1016/j.apgeog.2009.01.003

    Article  Google Scholar 

  • Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021). Nitrogen use efficiency definitions of today and tomorrow. Frontiers in Plant Science, 12(June), 1–10. https://doi.org/10.3389/fpls.2021.637108

    Article  Google Scholar 

  • CSA. (2015). Woreda-level crop production rankings in Ethiopia : A pooled data approach James Warner Tim Stehulak Leulsegged Kasa International Food Policy Research Institute (IFPRI) Addis Ababa, Ethiopia. January, 118.

  • Dalin, C., Wada, Y., Kastner, T., & Puma, M. J. (2017). Groundwater depletion embedded in international food trade. Nature, 543(7647), 700–704. https://doi.org/10.1038/nature21403

    Article  CAS  Google Scholar 

  • de Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J. C., & Louwagie, G. (2021). Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Science of the Total Environment, 786, 147283. https://doi.org/10.1016/j.scitotenv.2021.147283

    Article  CAS  Google Scholar 

  • Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J. F., El Harti, A., Ezzahar, J., Kussul, N., Labbassi, K., … Koetz, B. (2019). Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment, 221(November 2018), 551–568. https://doi.org/10.1016/j.rse.2018.11.007

  • Deng, X., Ma, W., Ren, Z., Zhang, M., Grieneisen, M. L., Chen, X., Fei, X., Qin, F., Zhan, Y., & Lv, X. (2020). Spatial and temporal trends of soil total nitrogen and C/N ratio for croplands of East China. Geoderma, 361(October 2018), 114035. https://doi.org/10.1016/j.geoderma.2019.114035

    Article  CAS  Google Scholar 

  • Di Gregorio, A., & Jansen, L. J. M. (2000). Land cover classification system (LCCS): Classification concepts and user manual. Fao, 53(January), 179.

    Google Scholar 

  • Didan, K. (2015). MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN Grid V006 . NASA EOSDIS Land Processes DAAC. Accessed 2022-05-27 from https://doi.org/10.5067/MODIS/MOD13Q1.006

  • Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS vegetation index user ’s guide (Collection 6). In The University of Arizona (Vol. 2015, Issue May).

  • Epelde, A. M., Cerro, I., Sánchez-Pérez, J. M., Sauvage, S., Srinivasan, R., & Antigüedad, I. (2015). Application du modèle SWAT à l’évaluation de l’impact des modificationss des pratiques agricoles sur la qualité de l’eau. Hydrological Sciences Journal, 60(5), 825–843. https://doi.org/10.1080/02626667.2014.967692

    Article  CAS  Google Scholar 

  • EU Nitrogen Expert Panel. (2015). Nitrogen use efficiency (NUE): An indicator for the utilization of nitrogen in agriculture and food systems. Wageningen University, 1–47. https://www.solidian.com/fileadmin/user_upload/pdf/TDS/170726_GN_TDS_EX_GRID_Q142_CCE_25.pdf

  • FAO ASIS. (2022). Food and Agricultural Organization (FAO), Agricultural Stress Index System (ASIS)”, Crop/Pasture Phonology - Start/Maximum/End of Season http://www.fao.org/giews/earthobservation/, data observed at May/2022. 2022.

  • FAOSTAT. (2022). Food and Agricultural Organization (FAO), Statistical database and data sets of the food and agriculture organization of the united nations,” Available at: http://www.faostat.fao.org, 2022 data acc date March /2022. 2022

  • FEWS NET. (2018). Ethiopia livelihood zones. https://Fews.Net/Fews-Data/335. data accessed 07/30/2020

  • Francis, A., Mitiku, H., Wassie, H., & Befekadu, G. (2021). Soil fertility status, fertilizer application and nutrient balance in SNNPR, southern Ethiopia in contrasting agro-ecological zones of Ethiopia. African Journal of Agricultural Research, 17(11), 1433–1452. https://doi.org/10.5897/ajar2021.15640

    Article  CAS  Google Scholar 

  • Food security information network (FSIN). (2021). Global report on food crises. In Global network against food crisis (Issue September). https://www.wfp.org/publications/2020-global-report-food-crises

  • Gastal, F., & Lemaire, G. (2002). N uptake and distribution in crops : An agronomical and ecophysiological perspective. Journal of Experimental Botany, 53(370), 789–799. https://doi.org/10.1093/jexbot/53.370.789

    Article  CAS  Google Scholar 

  • Gholkar, M., Thombare, P., Koli, U., & Kumbhar, N. (2022). Techno-economic assessment of agricultural land remediation measures through nutrient management practices to achieve sustainable agricultural production. Environmental Challenges, 7(February), 100492. https://doi.org/10.1016/j.envc.2022.100492

    Article  CAS  Google Scholar 

  • Gray, J., Sulla-Menashe, D., & Friedl, M. A. (2019). User guide to collection 6 MODIS land cover dynamics (MCD12Q2) product. User guide, 6(Figure 1), 1–8. https://doi.org/10.5067/MODIS/MCD12Q1.006

    Article  Google Scholar 

  • Guerif, M., Houles, V., & Baret, F. (2007). Remote sensing and detection of nitrogen status in crops. Application to precise nitrogen fertilization. 4th International Symposium on Intelligent Information Technology in Agriculture, ISIITA 2007.

  • Guo, Y., Chen, S., Li, X., Cunha, M., Jayavelu, S., Cammarano, D., & Fu, Y. H. (2022). Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images. Remote Sensing, 14(6), 1–22. https://doi.org/10.3390/rs14061337

    Article  Google Scholar 

  • He, Q., Wendland, F., & Molkenthin, F. (2019). The analysis of nitrogen load and simulation uncertainty using SWAT in a catchment with paddy field in China. Water Science and Technology, 80(4), 806–816. https://doi.org/10.2166/wst.2019.326

    Article  CAS  Google Scholar 

  • Heffer, P., Magen, H., Mikkelsen, R., & Wichelns, D. (2015). Managing water and fertilizer for sustainable agricultural intensification. In International Fertilizer Industry Association.

  • Hively, W. D., Lang, M., Mccarty, G. W., Keppler, J., Sadeghi, A., & Mcconnell, L. L. (2009). Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. 64(5), 303–313. https://doi.org/10.2489/jswc.64.5.303

  • Imran, M., Stein, A., & Zurita-Milla, R. (2015). Using geographically weighted regression kriging for crop yield mapping in West Africa. International Journal of Geographical Information Science, 29(2), 234–257. https://doi.org/10.1080/13658816.2014.959522

    Article  Google Scholar 

  • Jiang, Y., & Somers, G. (2009). Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrogeology Journal, 17(3), 707–724. https://doi.org/10.1007/s10040-008-0390-2

    Article  CAS  Google Scholar 

  • Katebikord, A., Sadeghi, S. H., & Singh, V. P. (2022). Spatial modeling of soil organic carbon using remotely sensed indices and environmental field inventory variables. Environmental Monitoring and Assessment, 194(3). https://doi.org/10.1007/s10661-022-09842-8

  • Khalifa, M., Elagib, N. A., Ribbe, L., & Schneider, K. (2018). Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Science of the Total Environment, 624, 790–806. https://doi.org/10.1016/j.scitotenv.2017.12.090

    Article  CAS  Google Scholar 

  • Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2017). Fertilizers and their contaminants in soils, surface and groundwater. In Encyclopedia of the Anthropocene (Vols. 1–5, Issue December). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809665-9.09888-8

  • Kibret, K. S., Marohn, C., & Cadisch, G. (2020). Use of MODIS EVI to map crop phenology, identify cropping systems, detect land use change and drought risk in Ethiopia–an application of Google Earth Engine. European Journal of Remote Sensing, 53(1), 176–191. https://doi.org/10.1080/22797254.2020.1786466

    Article  Google Scholar 

  • Koh, E. H., Lee, E., & Lee, K. K. (2020). Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination: Implications for an effective groundwater management strategy. Journal of Environmental Management, 268, 110646. https://doi.org/10.1016/j.jenvman.2020.110646

    Article  CAS  Google Scholar 

  • Kouadio, L., Newlands, N. K., Davidson, A., & Zhang, Y. (2014). Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. i, 10193–10214. https://doi.org/10.3390/rs61010193

  • Kuma, H. G., Feyessa, F. F., & Demissie, T. A. (2022a). Impacts of land-use/land-cover changes on nutrient losses in agricultural catchment, southern Ethiopia. Water Supply, 22(5), 5509–5523. https://doi.org/10.2166/ws.2022.130

    Article  CAS  Google Scholar 

  • Kuma, H. G., Feyessa, F. F., & Demissie, T. A. (2022). Land-use/land-cover changes and implications in Southern Ethiopia: Evidence from remote sensing and informants. Heliyon, 8(3), e09071. https://doi.org/10.1016/j.heliyon.2022b.e09071

    Article  Google Scholar 

  • Lassaletta, L., Sanz-Cobena, A., Aguilera, E., Quemada, M., Billen, G., Bondeau, A., Cayuela, M. L., Cramer, W., Eekhout, J. P. C., Garnier, J., Grizzetti, B., Intrigliolo, D. S., Ramos, M. R., Romero, E., Vallejo, A., & Gimeno, B. S. (2021). Nitrogen dynamics in cropping systems under Mediterranean climate: A systemic analysis. Environmental Research Letters, 16(7). https://doi.org/10.1088/1748-9326/ac002c

  • Li, C., Chen, W., Wang, Y., Wang, Y., Ma, C., Li, Y., Li, J., & Zhai, W. (2022). Mapping winter wheat with optical and SAR images based on Google Earth Engine in Henan Province, China. Remote Sensing, 14(2). https://doi.org/10.3390/rs14020284

  • Liang, D., Zuo, Y., Huang, L., Zhao, J., Teng, L., & Yang, F. (2015). Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m GlobeLand30 datasets: A case study in Anhui Province, China. ISPRS International Journal of Geo-Information, 4(4), 2519–2541. https://doi.org/10.3390/ijgi4042519

    Article  Google Scholar 

  • Liu, J., Huffman, T., Shang, J., Qian, B., Dong, T., & Zhang, Y. (2016). Identifying major crop types in Eastern Canada using a fuzzy decision tree classifier and phenological indicators derived from time series MODIS data. Canadian Journal of Remote Sensing, 42(3), 259–273. https://doi.org/10.1080/07038992.2016.1171133

    Article  Google Scholar 

  • Liu, J., Zhu, W., Atzberger, C., Zhao, A., Pan, Y., & Huang, X. (2018). A phenology-based method to map cropping patterns under a wheat-maize rotation using remotely sensed time-series data. Remote Sensing, 10(8), 1–25. https://doi.org/10.3390/rs10081203

    Article  Google Scholar 

  • Liu, Y., Heuvelink, G. B. M., Bai, Z., He, P., Xu, X., Ma, J., & Masiliūnas, D. (2020). Space-time statistical analysis and modelling of nitrogen use efficiency indicators at provincial scale in China. European Journal of Agronomy, 115(July 2019), 126032. https://doi.org/10.1016/j.eja.2020.126032

    Article  CAS  Google Scholar 

  • Maaz, T. M., Sapkota, T. B., Eagle, A. J., Kantar, M. B., Bruulsema, T. W., & Majumdar, K. (2021). Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. In Global Change Biology (Vol. 27, Issue 11). https://doi.org/10.1111/gcb.15588

  • Mai Van, T. (2007). Soil erosion and nitrogen leaching in northern Vietnam: experimentation and modelling. In PhD thesis. –With ref.– With summaries in English, Dutch and Vietnamese.

  • Manolov, R. (2018). Linear trend in single-case visual and quantitative analyses. Behavior Modification, 42(5), 684–706. https://doi.org/10.1177/0145445517726301

    Article  Google Scholar 

  • Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. https://doi.org/10.1093/aob/mcq028

    Article  Google Scholar 

  • McCoy, J., Johnston, K., Kopp, S., Borup, B., Willison, J., & Payne, B. (2002). Using ArGis spatial analyst. In Esri. http://downloads.esri.com/support/documentation/ao_/776Using_Spatial_Analyst.pdf

  • Mekonen, A. A., & Berlie, A. B. (2021). Rural households’ livelihood vulnerability to climate variability and extremes: A livelihood zone-based approach in the Northeastern Highlands of Ethiopia. Ecological Processes, 10(1). https://doi.org/10.1186/s13717-021-00313-5

  • Meroni, M., Verstraete, M. M., Rembold, F., Urbano, F., & Kayitakire, F. (2014). A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. International Journal of Remote Sensing, 35(7), 2472–2492. https://doi.org/10.1080/01431161.2014.883090

    Article  Google Scholar 

  • Mezera, J., Lukas, V., Horniaček, I., Smutný, V., & Elbl, J. (2022). Comparison of proximal and remote sensing for the diagnosis of crop status in site-specific crop management. Sensors, 22(1). https://doi.org/10.3390/s22010019

  • Orke, Y. A., & Li, M. H. (2022). Impact of climate change on hydrometeorology and droughts in the Bilate Watershed, Ethiopia. Water (Switzerland), 14(5), 1–31. https://doi.org/10.3390/w14050729

    Article  Google Scholar 

  • Osco, L. P., Junior, J. M., Ramos, A. P. M., Furuya, D. E. G., Santana, D. C., Teodoro, L. P. R., Gonçalves, W. N., Baio, F. H. R., Pistori, H., da Junior, C. A. S., & Teodoro, P. E. (2020). Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sensing, 12(19), 1–17. https://doi.org/10.3390/rs12193237

    Article  Google Scholar 

  • Ou, C., & Hao, X. (2018). Agriculture drought and food security monitoring over the horn of Africa (HOA) from space. 2018 7th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2018, May, 1–4. https://doi.org/10.1109/Agro-Geoinformatics.2018.8476128

  • Plénet, D., & Lemaire, G. (1999). Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil, 216(1–2), 65–82. https://doi.org/10.1023/a:1004783431055

    Article  Google Scholar 

  • Ren, W., Banger, K., Tao, B., Yang, J., Huang, Y., & Tian, H. (2020). Global pattern and change of cropland soil organic carbon during 1901–2010: Roles of climate, atmospheric chemistry, land use and management. Geography and Sustainability, 1(1), 59–69. https://doi.org/10.1016/j.geosus.2020.03.001

    Article  Google Scholar 

  • Rijks, D., Massart, M., Rembold, F., Gommes, R., & Léo, O. (2007). The 2nd international workshop on crop and rangeland monitoring in eastern Africa (Issue March). https://doi.org/10.2788/17052

  • Roznik, M., Boyd, M., & Porth, L. (2022). Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks. Remote Sensing Applications: Society and Environment, 25(January), 100693. https://doi.org/10.1016/j.rsase.2022.100693

    Article  Google Scholar 

  • Sainju, U. M. (2017a). Determination of nitrogen balance in agroecosystems. MethodsX, 4(July), 199–208. https://doi.org/10.1016/j.mex.2017.06.001

    Article  Google Scholar 

  • Sainju, U. M. (2017b). Determination of nitrogen balance in agroecosystems. MethodsX, 4(June), 199–208. https://doi.org/10.1016/j.mex.2017.06.001

    Article  Google Scholar 

  • Sarrazin, F., Pianosi, F., & Wagener, T. (2017). An introduction to the SAFE Matlab toolbox with practical examples and guidelines. Sensitivity Analysis in Earth Observation Modelling, 363–378. https://doi.org/10.1016/B978-0-12-803011-0.00018-5

  • Sekharan, S., Samal, D. R., Phuleria, H. C., Chandel, M. K., Gedam, S., Kumar, R., Sethi, V., Supate, A. R., & Karmakar, S. (2022). River pollution monitoring over an industrial catchment in urban ecosystem: Challenges and proposed geospatial framework. Environmental Challenges, 7(August 2021), 100496. https://doi.org/10.1016/j.envc.2022.100496

  • Sidhu, N., Pebesma, E., & Wang, Y. C. (2017). Usability study to assess the IGBP land cover classification for Singapore. In Remote Sensing (Vol. 9, Issue 10, pp. 1–15). https://doi.org/10.3390/rs9101075

  • Simms, D. M., Waine, T. W., Taylor, J. C., & Juniper, G. R. (2014). The application of time-series MODIS NDVI profiles for the acquisition of crop information across Afghanistan. International Journal of Remote Sensing, 35(16), 6234–6254. https://doi.org/10.1080/01431161.2014.951099

    Article  Google Scholar 

  • Singh, A., Jakubowski, A. R., Chidister, I., & Townsend, P. A. (2013). A MODIS approach to predicting stream water quality in Wisconsin. Remote Sensing of Environment, 128, 74–86. https://doi.org/10.1016/j.rse.2012.10.001

    Article  Google Scholar 

  • Singh, R., Babu, S., Avasthe, R. K., Yadav, G. S., Das, A., Mohapatra, K. P., Kumar, A., Singh, V. K., & Chandra, P. (2021). Crop productivity, soil health, and energy dynamics of Indian Himalayan intensified organic maize-based systems. International Soil and Water Conservation Research, 9(2), 260–270. https://doi.org/10.1016/j.iswcr.2020.11.003

    Article  Google Scholar 

  • Solie, J. B., Dean Monroe, A., Raun, W. R., & Stone, M. L. (2012). Generalized algorithm for variable-rate nitrogen application in cereal grains. Agronomy Journal, 104(2), 378–387. https://doi.org/10.2134/agronj2011.0249

    Article  Google Scholar 

  • Sulla-menashe, D., Tan, B., Friedl, M. A., Sulla-menashe, D., Tan, B., Schneider, A., & Ramankutty, N. (2010). MODIS Collection 5 global land cover : Algorithm refinements and characterization of new datasets remote sensing of environment MODIS Collection 5 global land cover : Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1), 168–182. https://doi.org/10.1016/j.rse.2009.08.016

    Article  Google Scholar 

  • Tadesse, A., Kim, H. K., & Debela, A. (2016). Calibration of nitrogen fertilizer for quality protein maize (zea mays l.) based on in-season estimated yield using a handheld ndvi sensor in the central. 3(1), 25–32.

  • Tadesse, S. T., Oenema, O., van Beek, C., & Ocho, F. L. (2019). Nitrogen allocation and recycling in peri-urban mixed crop–livestock farms in Ethiopia. Nutrient Cycling in Agroecosystems, 115(2), 281–294. https://doi.org/10.1007/s10705-018-9957-z

    Article  CAS  Google Scholar 

  • Tamagno, S., Eagle, A. J., McLellan, E. L., van Kessel, C., Linquist, B. A., Ladha, J. K., & Pittelkow, C. M. (2022). Quantifying N leaching losses as a function of N balance: A path to sustainable food supply chains. Agriculture, Ecosystems and Environment, 324, 107714. https://doi.org/10.1016/j.agee.2021.107714

    Article  CAS  Google Scholar 

  • Tan, C. W., Bergmeir, C., Petitjean, F., & Webb, G. I. (2021). Time series extrinsic regression: Predicting numeric values from time series data. Data Mining and Knowledge Discovery, 35(3), 1032–1060. https://doi.org/10.1007/s10618-021-00745-9

    Article  Google Scholar 

  • Tekalign et al. (2016). Soil fertility status and fertilizer recommendation atlas of the Southern Nations, Nationalities and Peoples ’ Regional State , Ethiopia (Vol. 1, Issue July). https://www.ata.gov.et/resources/

  • Tenreiro, T. R., García-Vila, M., Gómez, J. A., Jiménez-Berni, J. A., & Fereres, E. (2021). Using NDVI for the assessment of canopy cover in agricultural crops within modelling research. Computers and Electronics in Agriculture, 182. https://doi.org/10.1016/j.compag.2021.106038

  • Testa, S., Mondino, E. C. B., & Pedroli, C. (2014). Correcting MODIS 16-day composite NDVI time-series with actual acquisition dates. European Journal of Remote Sensing, 47(1), 285–305. https://doi.org/10.5721/EuJRS20144718

    Article  Google Scholar 

  • Thieme, A., Yadav, S., Oddo, P. C., Fitz, J. M., McCartney, S., King, L. A., Keppler, J., McCarty, G. W., & Hively, W. D. (2020). Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sensing of Environment, 248(July), 111943. https://doi.org/10.1016/j.rse.2020.111943

    Article  Google Scholar 

  • USAID. (2005). Ethiopia Southern Nations, Nationalities and Peoples Region (SNNPR) Livelihood Zone Reports. https://pdf.usaid.gov/pdf_docs/PNADJ867.pdf

  • Usman, U., Yelwa, S. A., Gulumbe, S. U., Danbaba, A., & Nir, R. (2013). Modelling relationship between NDVI and climatic variables using geographically weighted regression. Journal of Mathematical Sciences and Applications, 1(2), 24–28. https://doi.org/10.12691/jmsa-1-2-2

    Article  Google Scholar 

  • Usman, U., Yelwa, S. A., Gulumbe, U., & Danbaba, A. (2013b). Modelling relationship between NDVI and climatic variables using geographically weighted regression. March 2017. https://doi.org/10.12691/jmsa-1-2-2

  • Van Hoolst, R., Eerens, H., Haesen, D., Royer, A., Bydekerke, L., Rojas, O., Li, Y., & Racionzer, P. (2016). FAO’s AVHRR-based Agricultural Stress Index System (ASIS) for global drought monitoring. International Journal of Remote Sensing, 37(2), 418–439. https://doi.org/10.1080/01431161.2015.1126378

    Article  Google Scholar 

  • Wallis, K. J., Candela, L., Mateos, R. M., & Tamoh, K. (2011). Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport. Agricultural Water Management, 98(10), 1629–1640. https://doi.org/10.1016/j.agwat.2011.06.001

    Article  Google Scholar 

  • Wang, L., & Wei, Y. (2016). Revised normalized difference nitrogen index (NDNI) for estimating canopy nitrogen concentration in wetlands. Optik, 127(19), 7676–7688. https://doi.org/10.1016/j.ijleo.2016.05.115

    Article  CAS  Google Scholar 

  • Wang, Z. H., & Li, S. X. (2019). Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). In Advances in Agronomy (1st ed., Vol. 156). Elsevier Inc. https://doi.org/10.1016/bs.agron.2019.01.007

  • Wei, X., & Bailey, R. T. (2021). Evaluating nitrate and phosphorus remediation in intensively irrigated stream-aquifer systems using a coupled flow and reactive transport model. Journal of Hydrology, 598(April), 126304. https://doi.org/10.1016/j.jhydrol.2021.126304

    Article  CAS  Google Scholar 

  • Xiong, X., Zhang, J., Guo, D., Chang, L., & Huang, D. (2019). Non-invasive sensing of nitrogen in plant using digital images and machine learning for brassica campestris ssp. Chinensis L. Sensors (Switzerland), 19(11). https://doi.org/10.3390/s19112448

  • Xu, C., Zhang, X., Zhang, J., Chen, Y., Yami, T. L., & Hong, Y. (2021). Estimation of crop water requirement based on planting structure extraction from multi-temporal MODIS EVI. Water Resources Management, 35(7), 2231–2247. https://doi.org/10.1007/s11269-021-02838-y

    Article  Google Scholar 

  • Xu, L., Niu, H., Xu, J., & Wang, X. (2013). Nitrate-nitrogen leaching and modeling in intensive agriculture farmland in China. The Scientific World Journal, 2013(3). https://doi.org/10.1155/2013/353086

  • Xu, X., Conrad, C., & Doktor, D. (2017). Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS). https://doi.org/10.3390/rs9030254

  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017. https://doi.org/10.1155/2017/1353691

  • Yamano, T., & Arai, A. (2011). Fertilizer policies, price, and application in East Africa. Emerging Development of Agriculture in East Africa, December, 39–57. https://doi.org/10.1007/978-94-007-1201-0_3

  • Yang, M., Xu, X., Li, Z., Meng, Y., Yang, X., Song, X., Yang, G., Xu, S., Zhu, Q., & Xue, H. (2022). Remote sensing prescription for rice nitrogen fertilizer recommendation based on improved NFOA model. Agronomy, 12(8), 1–17. https://doi.org/10.3390/agronomy12081804

    Article  CAS  Google Scholar 

  • Yohalashet, M. H., Fana, G., Abdulkadir, B., Kassa, S., Desalegn, T., Tadesse, K., Haileselassie, M., Abera, T., Amede, T., & Tibebe, D. (2017). Crop response to fertilizer application in Ethiopia: A review crop response to fertilizer application in Ethiopia: A review 3 Section 2. Researchgate.Net, 16(July), 21–48. https://www.researchgate.net/publication/320519620

  • Yuan, S., & Peng, S. (2017). Exploring the trends in nitrogen input and nitrogen use efficiency for agricultural sustainability. https://doi.org/10.3390/su9101905

  • Zelleke, G., Agegnehu, G., Abera, D., & Rashid, S. (2010). Fertilizer and soil fertility potential in Ethiopia: Constraints and opportunities for enhancing the system. June 2015. http://www.ifpri.org/publication/fertilizer-and-soil-fertilitypotential-ethiopia

  • Zhao, Q., Fan, Q., & Zhou, P. (2022). An integrated analysis of GWR models and spatial econometric global models to decompose the driving forces of the township consumption development in Gansu, China. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010281

  • Zhao, Z., Gao, J., Wang, Y., Liu, J., & Li, S. (2015). Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression. Theoretical and Applied Climatology, 120(3–4), 507–519. https://doi.org/10.1007/s00704-014-1188-x

    Article  Google Scholar 

  • Zhi, Y., Shan, L., Ke, L., & Yang, R. (2020). Analysis of land surface temperature driving factors and spatial heterogeneity research based on geographically weighted regression model. Complexity, 2020. https://doi.org/10.1155/2020/2862917

  • Zhou, Q., & Ismaeel, A. (2021a). Geo-spatial Information Science Integration of maximum crop response with machine learning regression model to timely estimate crop yield. Geo-Spatial Information Science, 00(00), 1–10. https://doi.org/10.1080/10095020.2021.1957723

    Article  Google Scholar 

  • Zhou, Q., & Ismaeel, A. (2021b). Integration of maximum crop response with machine learning regression model to timely estimate crop yield. Geo-Spatial Information Science, 24(3), 474–483. https://doi.org/10.1080/10095020.2021.1957723

    Article  Google Scholar 

  • Zhou, Z., Ansems, N., & Torfs, P. (2015). A global assessment of nitrate contamination in groundwater. International Groundwater Resources Assessment Centre, January, 1–27.

Download references

Acknowledgements

We appreciate the funding and supplies provided by the Arba Minch University Water Resource Research Institute for the data collecting.

We also acknowledge Dr. Yanyun Li, Economist/Data Management Specialist Global Information and Early Warning System (GIEWS) Markets and Trade Division (EST) Food and Agriculture Organization of the United Nations (FAO) Viale delle Terme di Caracalla 00153 Roma www.fao.org/giews/, for their inspirational advice and encouragement regarding the use of data and citation guidelines.

Funding

This study is funded by the Arba Minch University Water Resource Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bereket Geberselassie Assa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assa, B.G., Bhowmick, A. & Cholo, B.E. Modeling Nitrogen Balance for Pre-Assessment of Surface and Groundwater Nitrate (NO3-−N) Contamination from N–Fertilizer Application Loss: a Case of the Bilate Downstream Watershed Cropland. Water Air Soil Pollut 234, 105 (2023). https://doi.org/10.1007/s11270-023-06114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06114-0

Keywords

Navigation