Skip to main content

Advertisement

Log in

Mercury Drives Metal Stress Response in Red Spruce Foliage in High-Elevation Appalachian Forests of New England, USA

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract 

The dieback of Picea rubens Sarg. (red spruce) in the Appalachian Mountains of New England has been correlated with emissions transported from the Great Lakes region, including acids, metals, and oxidants. In 1994–1995, metal stress in red spruce foliage evidenced by phytochelatin concentrations increased with red spruce damage index in spruce-fir dominated stands in high elevation forests. In this study, we revisited those same forests after two decades to examine metal stress impacts on high-elevation forests following reductions in atmospheric pollutant loading. We measured metal concentrations in soils, lichens, and foliage, and concentrations of phytochelatin and its precursors in foliage of red spruce trees at 1000 m along a west–east transect from New York to New Hampshire, and along an 800–1000 m elevational transect on Whiteface Mountain, NY. Path analysis showed that foliar Hg had a direct positive effect on foliar phytochelatins, metal-binding peptides produced by the metal stress response in plants. Essential metals Cu and Zn decreased the concentration of Hg in foliage. However, we could not determine the relative importance of atmospheric vs soil pathways for metal exposure. While metal stress was still occurring on Whiteface Mountain in 2013, the overall visual health of red spruce trees across the region was significantly improved compared to 1993–1995. Thus, although metal stress is still measurable in red spruce, the physiological impact may be lessened by decreases in the deposition of metals and acids, thus providing evidence of positive forest health outcomes from improvements in regional air quality in the Northeastern US.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agrama, H. A. S. (1996). Sequential path analysis of grain yield and its components in maize. Plant Breeding, 115(5), 343–346.

    Article  Google Scholar 

  • Battles, J. J., Johnson, A. H., Siccama, T. G., Friedland, A. J., & Miller, E. K. (1992). Red spruce death: Effects on forest composition and structure on Whiteface Mtn., New York. Bulletin of the Torrey Botanical Club, 119(4), 418–430.

    Article  Google Scholar 

  • Blackwell, B. D., & Driscoll, C. T. (2015). Deposition of mercury in forests along a montane elevation gradient. Environmental Science & Technology., 49(9), 5363–5370.

    Article  CAS  Google Scholar 

  • Brunetti, P., Zanella, L., De Paolis, A., Di Litta, D., Cecchetti, V., Falasca, G., Barbieri, M., Altamura, M. M., Costantino, P., & Cardarelli, M. (2015). Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Journal of Experimental Botany., 66(13), 3815–3829.

    Article  CAS  Google Scholar 

  • Carrasco-Gil, S., Álvarez-Fernández, A. N. A., Sobrino-Plata, J., Millán, R., Carpena-Ruiz, R. O., Leduc, D. L., Andrews, J. C., AbadÍA, J., & Hernández, L. E. (2011). Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant, Cell and Environment., 34(5), 778–791.

    Article  CAS  Google Scholar 

  • Cleavitt, N. L., Battles, J. J., Johnson, C. E., & Fahey, T. J. (2018). Long-term decline of sugar maple following forest harvest, Hubbard Brook Experimental Forest, New Hampshire. Canadian Journal of Forest Research., 48(1), 23–31.

    Article  CAS  Google Scholar 

  • de Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of Experimental Botany, 63(16), 5957–5966.

    Article  CAS  Google Scholar 

  • DeHayes, D. H., Schaberg, P. G., Hawley, G. J., & Strimbeck, G. R. (1999). Acid rain impacts on calcium nutrition and forest health. BioScience, 49(10), 789–800.

    Article  Google Scholar 

  • Dewey, D. R., & Lu, K. (1959). A correlation and path-coefficient analysis of components of crested wheatgrass seed production 1. Agronomy Journal, 51(9), 515–518.

    Article  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the Northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience, 51(3), 180–198.

    Article  Google Scholar 

  • Evans, G. C., Norton, S. A., Fernandez, I. J., Kahl, J. S., & Hanson, D. (2005). Changes in concentrations of major elements and trace metals in northeastern U.S.-Canadian sub-alpine forest floors. Water, Air, and Soil Pollution., 163(1), 245–267.

    Article  CAS  Google Scholar 

  • Foster, J. R., & D’Amato, A. W. (2015). Montane forest ecotones moved downslope in Northeastern USA in spite of warming between 1984 and 2011. Global Change Biology., 21(12), 4497–4507.

    Article  Google Scholar 

  • Friedland, A. J., Johnson, A. H., Siccama, T. G., & Mader, D. L. (1984). Trace metal profiles in the forest floor of New England. Soil Science Society of America Journal., 48(2), 422–425.

    Article  CAS  Google Scholar 

  • Garg, N., & Aggarwal, N. (2011). Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) millsp. Journal of Plant Growth Regulation., 30(3), 286–300.

    Article  CAS  Google Scholar 

  • Garg, N., & Kaur, H. (2013). Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) millsp. genotypes colonized by arbuscular mycorrhizal fungi. Journal of Agronomy and Crop Science., 199(2), 118–133.

    Article  CAS  Google Scholar 

  • Gawel, J. E. (1997). Phytochelatins - Biomonitors for metal stress in terrestrial plants [dissertation]. Massachusetts Institute of Technology.

    Google Scholar 

  • Gawel, J. E., Ahner, B. A., Friedland, A. J., & Morel, F. M. M. (1996). Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature, 381(6577), 64–65.

    Article  CAS  Google Scholar 

  • Gawel, J. E., Trick, C. G., & Morel, F. M. M. (2001). Phytochelatins are bioindicators of atmospheric metal exposure via direct foliar uptake in trees near Sudbury, Ontario. Canada. Environmental Science & Technology., 35(10), 2108–2113.

    Article  CAS  Google Scholar 

  • Godbold, D. L., & Hüttermann, A. (1986). The uptake and toxicity of mercury and lead to spruce (Picea abies Karst.) seedlings. Water, Air, and Soil pollution., 31(1–2), 509–515.

    Article  CAS  Google Scholar 

  • González, A., Laporte, D., & Moenne, A. (2021). Cadmium accumulation involves synthesis of glutathione and phytochelatins, and activation of CDPK, CaMK, CBLPK, and MAPK signaling pathways in Ulva compressa. Frontiers in Plant Science., 12, 669096.

    Article  Google Scholar 

  • Grill, E., Winnacker, E. L., & Zenk, M. H. (1987). Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences., 84(2), 439–443.

    Article  CAS  Google Scholar 

  • Grill, E., Loffler, S., Winnacker, E.-L., & Zenk, M. H. (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences., 86(18), 6838–6842.

    Article  CAS  Google Scholar 

  • Gupta, M., Sharma, P., Sarin, N. B., & Sinha, A. K. (2009). Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere, 74(9), 1201–1208.

    Article  CAS  Google Scholar 

  • Johnson, A. H., Cook, E. R., & Siccama, T. G. (1988). Climate and red spruce growth and decline in the northern Appalachians. Proceedings of the National Academy of Sciences., 85(15), 5369–5373.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis. 5th ed. Upper Saddle River, N.J: Prentice Hall.

  • Keltjens, W. G., & van Beusichem, M. L. (1998). Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): Combined effects of copper and cadmium. Plant and Soil., 203(1), 119–126.

    Article  CAS  Google Scholar 

  • Kline, R. M. (2015). Principles and practice of structural equation modeling. 4th ed. New York: The Guilford Press.

  • Kneer, R., & Zenk, M. H. (1992). Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry, 31(8), 2663–2667.

    Article  CAS  Google Scholar 

  • Kosiba, A. M., Schaberg, P. G., Rayback, S. A., & Hawley, G. J. (2017). Comparative growth trends of five northern hardwood and montane tree species reveal divergent trajectories and response to climate. Canadian Journal of Forest Research., 47(6), 743–754.

    Article  CAS  Google Scholar 

  • Kosiba, A. M., Schaberg, P. G., Rayback, S. A., & Hawley, G. J. (2018). The surprising recovery of red spruce growth shows links to decreased acid deposition and elevated temperature. The Science of the Total Environment., 637–638, 1480–1491.

    Article  CAS  Google Scholar 

  • Lawrence, G. B., Hazlett, P. W., Fernandez, I. J., Ouimet, R., Bailey, S. W., Shortle, W. C., Smith, K. T., & Antidormi, M. R. (2015). Declining acidic deposition begins reversal of forest-soil acidification in the Northeastern U.S. and Eastern Canada. Environmental Science & Technology., 49(22), 13103–13111.

    Article  CAS  Google Scholar 

  • Li, C. C. (1975). Path Analysis: A Primer. Pacific Grove, Calif: Boxwood Press.

  • Liu, Y., Wang, X., Zeng, G., Qu, D., Gu, J., Zhou, M., & Chai, L. (2007). Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) gaud. Chemosphere., 69(1), 99–107.

    Article  CAS  Google Scholar 

  • Maier, E. A., Matthews, R. D., McDowell, J. A., Walden, R. R., & Ahner, B. A. (2003). Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution. Journal of Environmental Quality., 32(4), 1356–1364.

    Article  CAS  Google Scholar 

  • McLaughlin, S. B., Downing, D. J., Blasing, T. J., Cook, E. R., & Adams, H. S. (1987). An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the eastern United States. Oecologia, 72(4), 487–501.

    Article  CAS  Google Scholar 

  • Meadows, M., & Watmough, S. A. (2012). An assessment of long-term risks of metals in Sudbury: A critical loads approach. Water, Air, and Soil Pollution., 223(7), 4343–4354.

    Article  CAS  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere., 65(6), 1027–1039.

    Article  CAS  Google Scholar 

  • Mishra, S., Tripathi, R. D., Srivastava, S., Dwivedi, S., Trivedi, P. K., Dhankher, O. P., & Khare, A. (2009). Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresource Technology., 100(7), 2155–2161.

    Article  CAS  Google Scholar 

  • Nechita, C., Iordache, A. M., Lemr, K., Levanič, T., & Pluhacek, T. (2021). Evidence of declining trees resilience under long term heavy metal stress combined with climate change heating. Journal of Cleaner Production., 317, 128428.

    Article  CAS  Google Scholar 

  • Norton, S. A., Wilson, T., Handley, M., & Osterberg, E. C. (2007). Atmospheric deposition of cadmium in the Northeastern USA. Applied Geochemistry., 22(6), 1217–1222.

    Article  CAS  Google Scholar 

  • Oliva, S. R., & Raitio, H. (2003). Review of cleaning techniques and their effects on the chemical composition of foliar samples. Boreal Environment Research., 8(3), 263–272.

    CAS  Google Scholar 

  • Österås, A. H., & Greger, M. (2006). Interactions between calcium and copper or cadmium in Norway spruce. Biologia Plantarum., 50(4), 647–652.

    Article  Google Scholar 

  • Richardson, J. B., Friedland, A. J., Kaste, J. M., & Jackson, B. P. (2014). Forest floor lead changes from 1980 to 2011 and subsequent accumulation in the mineral soil across the northeastern United States. Journal of Environmental Quality., 43(3), 926–935.

    Article  CAS  Google Scholar 

  • Richardson, J. B., Donaldson, E. C., Kaste, J. M., & Friedland, A. J. (2015). Forest floor lead, copper and zinc concentrations across the northeastern United States: Synthesizing spatial and temporal responses. The Science of the Total Environment., 505, 851–859.

    Article  CAS  Google Scholar 

  • Salt, D. E., & Rauser, W. E. (1995). MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology., 107(4), 1293–1301.

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2015) Base SAS® 9.4 Procedure Guide: Statistical Procedures, 4th Edition. Cary, NC: SAS Institute, Inc.

  • SAS Institute Inc. (2017) SAS/STAT® 14.3 User’s Guide. Cary, NC: SAS Institute Inc.

  • Schaberg, P. G., Dehayes, D. H., Hawley, G. J., Strimbeck, G. R., Cumming, J. R., Murakami, P. F., & Borer, C. H. (2000). Acid mist and soil Ca and Al alter the mineral nutrition and physiology of red spruce. Tree Physiology., 20(2), 73–85.

    Article  CAS  Google Scholar 

  • Schaberg, P. G., Lazarus, B. E., Hawley, G. J., Halman, J. M., Borer, C. H., & Hansen, C. F. (2011). Assessment of weather-associated causes of red spruce winter injury and consequences to aboveground carbon sequestration. Canadian Journal of Forest Research., 41(2), 359–369.

    Article  Google Scholar 

  • Schat, H., & Kalff, M. M. A. (1992). Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiology., 99(4), 1475–1480.

    Article  CAS  Google Scholar 

  • Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., & Bleeker, P. M. (2002). The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. Journal of Experimental Botany., 53(379), 2381–2392.

    Article  CAS  Google Scholar 

  • Schröder, P., Fischer, C., Debus, R., & Wenzel, A. (2003). Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and in soil eluates. Environmental Science and Pollution Research International., 10(4), 225–234.

    Article  CAS  Google Scholar 

  • Scott, J. T., Siccama, T. G., Johnson, A. H., & Breisch, A. R. (1984). Decline of red spruce in the Adirondacks, New York. Bulletin of the Torrey Botanical Club., 111, 438.

    Article  Google Scholar 

  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials., 325, 36–58.

    Article  CAS  Google Scholar 

  • Simonetti, A., Gariépy, C., & Carignan, J. (2003). Tracing sources of atmospheric pollution in western Canada using the Pb isotopic composition and heavy metal abundances of epiphytic lichens. Atmospheric Environment., 37(20), 2853–2865.

    Article  CAS  Google Scholar 

  • Smorkalov, I. A., Vorobeichik, E. L. (2022). Does long-term industrial pollution affect the fine and coarse root mass in forests? Preliminary investigation of two copper smelter contaminated areas. Water, Air, and Soil Pollution. 233(2), 55.

  • Srivastava, G., Kumar, S., Dubey, G., Mishra, V., & Prasad, S. M. (2012). Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biological Trace Element Research., 149(1), 86–96.

    Article  CAS  Google Scholar 

  • Sullivan, T. J., Driscoll, C. T., Beier, C. M., Burtraw, D., Fernandez, I. J., Galloway, J. N., Gay, D. A., Goodale, C. L., Likens, G. E., Lovett, G. M., et al. (2018). Air pollution success stories in the United States: The value of long-term observations. Environmental Science & Policy., 84, 69–73.

    Article  CAS  Google Scholar 

  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. The New Phytologist., 203(1), 32–43.

    Article  Google Scholar 

  • Sylwia, W., Anna, R., Ewa, B., Stephan, C., & Danuta, M. A. (2010). The role of subcellular distribution of cadmium and phytochelatins in the generation of distinct phenotypes of AtPCS1- and CePCS3-expressing tobacco. Journal of Plant Physiology., 167(12), 981–988.

    Article  CAS  Google Scholar 

  • Thangavel, P., Long, S., & Minocha, R. (2007). Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell, Tissue and Organ Culture., 88(2), 201–216.

    Article  CAS  Google Scholar 

  • U.S. EPA. (2021). Lead trends. Research Triangle Park, NC: Air Quality Analysis Group, U.S. EPA Office of Air Quality Planning and Standards; [accessed 2018 1/21/2018]. https://www.epa.gov/air-trends/lead-trends.

  • Vatamaniuk, O. K., Mari, S., Lu, Y.-P., & Rea, P. A. (2000). Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. The Journal of Biological Chemistry., 275(40), 31451–31459.

    Article  CAS  Google Scholar 

  • Verrico, B. M., Weiland, J., Perkins, T. D., Beckage, B., Keller, S. R., & Burns, K. C. (2020). Long-term monitoring reveals forest tree community change driven by atmospheric sulphate pollution and contemporary climate change. Diversity & Distributions., 26(3), 270–283.

    Article  Google Scholar 

  • Wason, J. W., Dovciak, M., Beier, C. M., Battles, J. J., & Butt, N. (2017). Tree growth is more sensitive than species distributions to recent changes in climate and acidic deposition in the northeastern United States. The Journal of Applied Ecology., 54(6), 1648–1657.

    Article  Google Scholar 

  • Wason, J. W., Beier, C. M., Battles, J. J., & Dovciak, M. (2019). Acidic deposition and climate warming as drivers of tree growth in high-elevation spruce-fir forests of the Northeastern US. Frontiers in Forests and Global Change., 2, 63.

    Article  Google Scholar 

  • Wei, L., & Ahner, B. A. (2005). Sources and sinks of dissolved phytochelatin in natural seawater. Limnology and Oceanography., 50(1), 13–22.

    Article  CAS  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany., 76(2), 167–179.

    Article  CAS  Google Scholar 

  • Yu, X., Driscoll, C. T., Warby, R. A. F., Montesdeoca, M., & Johnson, C. E. (2014). Soil mercury and its response to atmospheric mercury deposition across the Northeastern United States. Ecological Applications., 24(4), 812–822.

    Article  Google Scholar 

  • Zananski, T. J., Holsen, T. M., Hopke, P. K., & Crimmins, B. S. (2011). Mercury temporal trends in top predator fish of the Laurentian Great Lakes. Ecotoxicology, 20(7), 1568–1576.

    Article  CAS  Google Scholar 

  • Zenk, M. H. (1996). Heavy metal detoxification in higher plants - A review. Gene, 179(1), 21–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Washington Tacoma undergraduates Jami Kovatch, Erin Ostrem, and Jennifer Vittetoe, Clarkson University undergraduates Erin Ryan and Kimmai Tran and postdoctoral associate Rajiv Narula, and Clemson University undergraduate Brianna Noblin for their help in field data collection and laboratory analyses. We also want to acknowledge Dr. Thomas Holsen and Mark Omara at Clarkson University for assistance with mercury analyses. A special thanks to Hugo and Miles Attemann for generously hosting the field crew at their home.

Funding

This work was supported by grants from University of Washington Tacoma’s School of Interdisciplinary Arts and Sciences Scholarship and Teaching Fund and Clarkson University’s Research Experience for Undergraduates Site program funded by the National Science Foundation (EEC-1062998).

Author information

Authors and Affiliations

Authors

Contributions

James E. Gawel: conceptualization, methodology, validation, investigation, resources, data curation, writing — original draft, writing — review and editing, supervision, project management, funding acquisition. EC Cline: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing — review and editing, supervision, project management, funding acquisition. Zaher Kmail: methodology, formal analysis, writing — review and editing. Sharon Hunter: investigation. Rebecca Cesa: investigation. Andrea R. Ferro: methodology, investigation, resources, writing — review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to James E. Gawel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawel, J.E., Cline, E.C., Kmail, Z. et al. Mercury Drives Metal Stress Response in Red Spruce Foliage in High-Elevation Appalachian Forests of New England, USA. Water Air Soil Pollut 233, 370 (2022). https://doi.org/10.1007/s11270-022-05836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05836-x

Keywords

Navigation