Skip to main content
Log in

Determining the Optimum Position and Size of Lamella Packet in an Industrial Wastewater Sedimentation Tank: A Computational Fluid Dynamics Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A full-scale three-dimensional CFD study is done to determine the optimum position and size of lamella packet for an industrial wastewater sedimentation tank. The Euler–Lagrange method is adopted for this study by utilising the discrete phase model (DPM). Validation of the model is done by comparing the settling efficiency obtained from this study with that of the experimental settling efficiency from a published paper. A huge amount of wall-clock time for the study is saved without compromising on the final result by performing preliminary 2-D simulations before the actual 3-D study. Out of the three positions studied, namely inlet-biased, outlet-biased, and centre-biased, the outlet-biased position is found to be the most effective in improving the settling efficiency of the sedimentation tank. It is also observed that the settling efficiency increases with an increase in the number of inclined plates, but, only up to a certain extent after which there is a rapid fall in the settling efficiency. The total settling efficiency is found to be highest when only 39 inclined plates are installed with an outlet-biased position. Short-circuiting between inlet and outlet is found to be the most prominent problem deterring the complete filling up of the sedimentation tank with inclined plates.

Article Highlights

• The first study about the optimum position of inclined plates.

• A comprehensive study on the optimum number of inclined plates using the discrete phase model.

• Key findings especially about the paradox of ‘increase in settling efficiency with increase in the settleable area due to addition of incline plates’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Al-Mafraji, E. A., & Al-Mussawy, H. A. (2021). Using lower and upper baffle arrangements to enhance sedimentation tank performance Using lower and upper baffle arrangements to enhance sedimentation tank performance. 4th International Conference on Engineering Sciences (ICES 2020). https://doi.org/10.1088/1757-899X/1067/1/012009

  • Al-Sammarraee, M., Chan, A., Salim, S. M., & Mahabaleswar, U. S. (2009). Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part I: Particle settling performance. Chemical Engineering Journal, 152(2–3), 307–314. https://doi.org/10.1016/j.cej.2009.04.062

    Article  CAS  Google Scholar 

  • Asgharzadeh, H., Firoozabadi, B., & Afshin, H. (2011). Experimental investigation of effects of baffle configurations on the performance of a secondary sedimentation tank. Scientia Iranica, 18(4 B), 938–949. https://doi.org/10.1016/j.scient.2011.07.005

    Article  CAS  Google Scholar 

  • Boycott, A. E. (1920). Sedimentation of blood corpuscles. Nature, 104(2621), 532.

    Article  CAS  Google Scholar 

  • Chen, T. S. (1970). Circular tubes for high-rate sedimentation. Doctoral dissertation, MS Thesis, National Taiwan University, China.

  • Culp, G., Hansen, S., & Richardson, G. (1968). High-Rate Sedimentation in Water Treatment Works. Journal-American Water Works Association, 60(6), 681–698.

    Article  Google Scholar 

  • Das, S., Bai, H., Wu, C., Kao, J. H., Barney, B., Kidd, M., & Kuettel, M. (2016). Improving the performance of industrial clarifiers using three-dimensional computational fluid dynamics. Engineering Applications of Computational Fluid Mechanics, 10(1), 130–144. https://doi.org/10.1080/19942060.2015.1121518

    Article  Google Scholar 

  • de Almeida, R. A., de Rezende, R. V. P., Mataczinski, A. K., Khan, A. I., Camilo, R., Ravagnani, M. A. S. S., & Lautenschlager, S. R. (2020). Three-dimensional simulation of a secondary circular settling tank: flow pattern and sedimentation process. Brazilian Journal of Chemical Engineering, 37(2), 333–350. https://doi.org/10.1007/s43153-020-00030-0

    Article  Google Scholar 

  • Demi̇r, A. (1995). Determination of settling efficiency and optimum plate angle for plated settling tanks. Water Research, 29(2), 611–616.

    Article  Google Scholar 

  • Ekama, G. A., & Marais, P. (2004). Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model. Water Research, 38(3), 495–506. https://doi.org/10.1016/j.watres.2003.10.026

    Article  CAS  Google Scholar 

  • Fadel, A. A., & Baumann, E. R. (1990). Tube settler modeling. Journal of Environmental Engineering, 116(1), 107–124.

    Article  CAS  Google Scholar 

  • Gao, H., & Stenstorm, M. K. (2017). Computational Fluid Dynamics Applied to Secondary Clarifier Analysis. World Environmental and Water Resources Congress, 2017, 301–315.

    Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2019). Generalizing the effects of the baffling structures on the buoyancy-induced turbulence in secondary settling tanks with eleven different geometries using CFD models. Chemical Engineering Research and Design, 143, 215–225. https://doi.org/10.1016/j.cherd.2019.01.015

    Article  CAS  Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2019). The influence of wind in secondary settling tanks for wastewater treatment—A computational fluid dynamics study. Part I: Circular secondary settling tanks. Water Environment Research, 92(4), 541–550. https://doi.org/10.1002/wer.1241

    Article  CAS  Google Scholar 

  • Gao, H., & Stenstrom, M. K. (2020). Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environment Research, 92(6), 796–820. https://doi.org/10.1002/wer.1279

    Article  CAS  Google Scholar 

  • Goodarzi, D., Lari, K. S., & Alighardashi, A. (2018). A large eddy simulation study to assess low-speed wind and baffle orientation effects in a water treatment sedimentation basin. Water Science and Technology, 2018(2), 412–421. https://doi.org/10.2166/wst.2018.171

    Article  CAS  Google Scholar 

  • Hirom, K., & Devi, T. T. (2021). CFD Simulation for Optimum gap between the plates in sedimentation tank retrofitted with inclined plates, International Virtual Conference on Innovative Trends in Hydrological and Environmental Systems, 28-30 April 2021, NIT Warangal, India.

  • Hirom, K., & Devi, T. T. (2022). Application of computational fluid dynamics in sedimentation tank design and its recent developments: a review. Water, Air & Soil Pollution, 233(22), 1–26. https://doi.org/10.1007/s11270-021-05458-9.

    Article  CAS  Google Scholar 

  • Khezri, S. M., Biati, A., & Erfani, Z. (2012). Determination of the effect of wind velocity and direction changes on turbidity removal in rectangular sedimentation tanks. Water Science and Technology, 66(12), 2814–2820. https://doi.org/10.2166/wst.2012.533

    Article  Google Scholar 

  • Larsen, P. (1977). On the hydraulics of rectangular settling basins: experimental and theoretical studies. Department of Water Resources Engineering, Lund Institute of Technology, University of Lund.

  • Lekang, O. I., Marie Bomo, A., & Svendsen, I. (2001). Biological lamella sedimentation used for wastewater treatment. Aquacultural Engineering, 24(2), 115–127. https://doi.org/10.1016/S0144-8609(00)00068-6

    Article  Google Scholar 

  • Leung, W. F., & Probstein, R. F. (1983). Lamella and tube settlers. 1. Model and operation. Industrial & Engineering Chemistry Process Design and Development, 22(1), 58–67.

    Article  CAS  Google Scholar 

  • Mostafa, H., Emad, S. E., & Usama, F. M. (2005). Modeling the effect of inlet baffle longitudinal and vertical positions on the settling tank performance with computational fluid dynamics. Al-Azhar Unversity Civil Engineering Research Magazine (CERM), 40(2), 113–140.

    Google Scholar 

  • Nguyen, T. A., Dao, N. T. M., Liu, B., Terashima, M., & Yasui, H. (2019). Computational fluid dynamics study on attainable flow rate in a lamella settler by increasing inclined plates. Journal of Water and Environment Technology, 17(2), 76–88. https://doi.org/10.2965/jwet.18-044

    Article  Google Scholar 

  • Park, N. S., Lim, J. L., Lee, S. J., Lee, K. H., & Kwon, S. B. (2006). Examining the effect of transverse troughs on hydrodynamic behavior in a sedimentation basin with CFD simulation and ADV technique. Journal of Water Supply: Research and Technology - AQUA, 55(4), 247–256. https://doi.org/10.2166/aqua.2006.010

    Article  Google Scholar 

  • Patziger, M., Kainz, H., Hunze, M., & Józsa, J. (2012). Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems. Water Research, 46(7), 2415–2424. https://doi.org/10.1016/j.watres.2012.02.007

    Article  CAS  Google Scholar 

  • Ramalingam, K., Xanthos, S., Gong, M., Fillos, J., Beckmann, K., Deur, A., & McCorquodale, J. A. (2012). Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York City wastewater treatment plants. Water Science and Technology, 65(6), 1087–1094. https://doi.org/10.2166/wst.2012.944

    Article  CAS  Google Scholar 

  • Razmi, A. M., Bakhtyar, R., Firoozabadi, B., & Barry, D. A. (2013). Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks. Canadian Journal of Civil Engineering, 40(2), 140–150. https://doi.org/10.1139/cjce-2012-0176

    Article  CAS  Google Scholar 

  • Saleh, A. M., & Hamoda, M. F. (1999). Upgrading of secondary clarifiers by inclined plate settlers. Water Science and Technology, 40(7), 141–149.

    Article  Google Scholar 

  • Sarkar, S., Kamilya, D., & Mal, B. C. (2007). Effect of geometric and process variables on the performance of inclined plate settlers in treating aquacultural waste. Water Research, 41(5), 993–1000. https://doi.org/10.1016/j.watres.2006.12.015

    Article  CAS  Google Scholar 

  • Seifollahi Moghadam, Z., Guibault, F., & Garon, A. (2021). On the evaluation of mesh resolution for large-eddy simulation of internal flows using openfoam. Fluids, 6(1), 24.

  • Shahrokhi, M., & Rostami, F. (2011). The computational modeling of baffle configuration in the primary sedimentation tanks. 2nd International Conference on Environmental Science and Technology (IPCBEE), 6, 392–396.

    Google Scholar 

  • Shamim, A., & Wais, M. T. (1980). Potential of tube settlers in removing raw water turbidity prior to coagulant. Aqua, 8, 166–169.

    Google Scholar 

  • Stamou, A. I., & Gkesouli, A. (2015). Modeling settling tanks for water treatment using computational fluid dynamics. Journal of Hydroinformatics, 17(5), 745–762. https://doi.org/10.2166/hydro.2015.069

    Article  Google Scholar 

  • Takata, K., & Kurose, R. (2017). Influence of density flow on treated water turbidity in a sedimentation basin with inclined plate settler. Water Science and Technology: Water Supply, 17(4), 1140–1148. https://doi.org/10.2166/ws.2017.012

    Article  Google Scholar 

  • Tamayol, A., Firoozabadi, B., & Ahmadi, G. (2008). Effects of Inlet Position and Baffle Configuration on Hydraulic Performance of Primary Settling Tanks. Journal of Hydraulic Engineering, 134(7), 1004–1009. https://doi.org/10.1061/(asce)0733-9429(2008)134:7(1004)

    Article  Google Scholar 

  • Tamayol, A., Nazari, M., Firoozabadi, B., & Nabovati, A. (2005). Numerical modeling and study of effects of inlet position and height of inlet baffle on the performance of settling tanks. In Fluid Dynamics Conf., Iran (In Farsi).

  • Tarpagkou, R., & Pantokratoras, A. (2013). CFD methodology for sedimentation tanks: The effect of secondary phase on fluid phase using DPM coupled calculations. Applied Mathematical Modelling, 37(5), 3478–3494. https://doi.org/10.1016/j.apm.2012.08.011

    Article  Google Scholar 

  • Tarpagkou, R., & Pantokratoras, A. (2014). The influence of lamellar settler in sedimentation tanks for potable water treatment - A computational fluid dynamic study. Powder Technology, 268, 139–149. https://doi.org/10.1016/j.powtec.2014.08.030

    Article  CAS  Google Scholar 

  • Tikhe, M. L. (1974). Some theoretical aspects of tube settlers. Indian Journal Environmental Health, 16(2), 26–33.

    Google Scholar 

  • Vahidifar, S., Saffarian, M. R., & Hajidavalloo, E. (2018). Introducing the theory of successful settling in order to evaluate and optimize the sedimentation tanks. Meccanica, 53(14), 3477–3493. https://doi.org/10.1007/s11012-018-0907-2

    Article  Google Scholar 

  • Vahidifar, S., Saffarian, M. R., & Hajidavalloo, E. (2019). Numerical simulation of particle-laden flow in an industrial wastewater sedimentation tank. Meccanica, 54(15), 2367–2383. https://doi.org/10.1007/s11012-019-01080-6

    Article  Google Scholar 

  • Xanthos, S., Gong, M., Ramalingam, K., Fillos, J., Deur, A., Beckmann, K., & McCorquodale, J. A. (2011). Performance Assessment of Secondary Settling Tanks Using CFD Modeling. Water Resources Management, 25(4), 1169–1182. https://doi.org/10.1007/s11269-010-9620-1

    Article  Google Scholar 

  • Xanthos, S., Gong, M., Ramalingam, K., Fillos, J., Deur, A., Beckmann, K., & McCorquodale, J. A. (2012). Investigating the Effect of Baffles on the Performance of Rectangular (Gould II Type) Settling Tanks Using a 3-D CFD Model. Proceedings of the Water Environment Federation, 2008(13), 3297–3307. https://doi.org/10.2175/193864708788733549

    Article  Google Scholar 

  • Xanthos, S., Ramalingam, K., Lipke, S., McKenna, B., & Fillos, J. (2013). Implementation of CFD modeling in the performance assessment and optimization of secondary clarifiers: The PVSC case study. Water Science and Technology, 68(9), 1901–1913. https://doi.org/10.2166/wst.2013.280

    Article  CAS  Google Scholar 

  • Yang, N., & Wen, Y. (2019). Numerical simulation of secondary sedimentation tank based on population balance model. IOP Conference Series: Earth and Environmental Science, 358(3), 032052. IOP Publishing.

  • Yao, K. M. (1973). Design of high-rate settlers. Journal of the Environmental Engineering Division, 99(5), 621–637.

    Article  Google Scholar 

Download references

Funding

This research work was funded by the Department of Science and Technology, New Delhi, Government of India (Grant no. CRG/2020/001341). A fellowship to the first author from the Ministry of Human Resource Development, Govt. of India, is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed immensely to the study. Kirpa Hirom came up with the idea for the study and performed the simulations under the supervision of Thiyam Tamphasana Devi. The results are then discussed by both the authors extensively, and the manuscript is drafted by the first author. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Kirpa Hirom.

Ethics declarations

Conflicts of interest/Competing interests

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirom, K., Devi, T.T. Determining the Optimum Position and Size of Lamella Packet in an Industrial Wastewater Sedimentation Tank: A Computational Fluid Dynamics Study. Water Air Soil Pollut 233, 261 (2022). https://doi.org/10.1007/s11270-022-05742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05742-2

Keywords

Navigation