Skip to main content
Log in

The Role of Iron Plaque in Miscanthus sacchariflorus Seedling Growth, Cadmium Uptake, and Translocation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The role of iron plaque in Miscanthus sacchariflorus seedling growth and cadmium ion (Cd2+) uptake, translocation, and tolerance was explored. The seedlings were cultivated for 10 d in half-strength Hoagland’s nutrient solution containing 0 mg L−1, 1.0 mg L−1, 5.0 mg L−1, 10.0 mg L−1, and 20.0 mg L−1 Cd2+ after iron plaque formation induced by 30 mg L−1 ferrous ion (Fe2+). Most of the Cd2+ were immobilized in the plant roots, and its concentration increased by 760.52–1872.01% in the non-induced and by 230.29–661.01% in the induced groups compared to the control. Compared with the non-induced group, in the induced group, Cd2+ concentration in the roots decreased by 33.30–42.68%, and a similar tendency was also observed in the shoots. Iron plaque formation could effectively contribute to Cd2+ uptake and immobilization, and Cd2+ concentration increased by 96.78–99.04% compared to the control. This process accounted for the decreased Cd2+ concentration in the roots, indicating the iron plaque functioned as a barrier against Cd2+ entering into the roots. When the seedlings were exposed to Cd2+ for 15 d, the translocation factor for Cd2+ in the induced group increased by 32.50–42.03% in comparison with that in the non-induced group, indicating the plaque significantly facilitated Cd2+ translocation from roots to shoots. The iron plaque eliminated the negative effects of higher Cd2+ concentration on shoot biomass as observed in the induced group and could maintain the Cd2+ tolerance of the seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Ali, M. B., Chun, H. S., Kim, B. K., et al. (2002). Cadmium-induced changes in antioxidant enzyme activities in (Rice sativa L cv. Dongjin). J Plant Biol, 45, 134–140.

    Article  CAS  Google Scholar 

  • Arduini, I., Masoni, A., Mariotti, M., et al. (2004). Low cadmium application increase miscanthus growth and cadmium translocation. Environmental and Experimental Botany, 52, 89–100.

    Article  CAS  Google Scholar 

  • Batty, L. C., & Younger, P. L. (2003). Effects of external iron concentration upon seedling growth and uptake of Fe and phosphate by the common reed, Phragmites australis (Cav.) Trin ex Steudel. Ann Bot, 92, 801–806.

    Article  CAS  Google Scholar 

  • Bidel, P. R., Pagès, L., Rivière, L. M., et al. (2000). Massflowdyn I: A carbon transport and partioning model for root system architecture. Ann Bot-London, 85, 869–886.

    Article  CAS  Google Scholar 

  • Cao, Z. Z., Qin, M. L., Lin, X. Y., et al. (2018). Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environmental Pollution, 238, 76–84.

    Article  CAS  Google Scholar 

  • Carvalho, M., Castro, P., & Azevedo, R. (2020). Hormesis in plants under Cd exposure: From toxic to beneficial element? Journal of Hazardous Materials, 384, 121434–121443.

    Article  CAS  Google Scholar 

  • Chen, H., Wang, Y. S., Fei, J., et al. (2015a). Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient. Ecotoxicology, 24, 1659–1667.

    Article  Google Scholar 

  • Chen, X. C., Liu, Y. G., Zeng, G. M., et al. (2015b). The optimal root length for Vetiveria zizanioides when transplanted to Cd polluted soil. Int J Phytoremediat, 17, 563–567.

    Article  CAS  Google Scholar 

  • Dai, M., Liu, J., Liu, W., et al. (2016). Phosphorus effects on radial oxygen loss, root porosity and iron plaque in two mangrove seedlings under cadmium stress. Marine Pollution Bulletin, 119, 262–269.

    Article  Google Scholar 

  • Deng, G., Li, M., Li, H., et al. (2014). Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquatic Botany, 112, 23–32.

    Article  CAS  Google Scholar 

  • Dezhban, A., Dhirvany, A., Attarod, M., et al. (2015). Cadmium and lead effects on chlorophyll fluorescence, chlorophyll pigments and proline of Robinia pseudoacacia. J Forestry Res, 26, 323–329.

    Article  CAS  Google Scholar 

  • Dou, M., Zhao, P., Wang, Y., & Li, G. (2017). Health risk assessment of cadmium pollution emergency for urban populations in Foshan City, China. Environmental Science and Pollution Research, 24, 8071–8086.

    Article  CAS  Google Scholar 

  • Du, J., Yan, C., & Li, Z. (2013). Formation of iron plaque on mangrove Kandalar obovata (S.L.) root surfaces and its role in cadmium uptake and translocation. Marine Pollution Bulletin, 74, 105–109.

    Article  CAS  Google Scholar 

  • Duan, R., Liu, J., Wu, C., et al. (2016). Physiological responses of Paspalum vaginatum Sw. to Cd stress and its Cd accumulation characteristic. Agricultural Sci Tech, 17, 1879–1884.

    Google Scholar 

  • Fu, Y., Yang, X., & Shen, H. (2018). Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings. Ecotox Environ Safe, 161, 534–541.

    Article  CAS  Google Scholar 

  • Gong, X., Yin, L., Chen, J., et al. (2015). Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. Plant Cell Reports, 34, 1963–1973.

    Article  CAS  Google Scholar 

  • Greco M., Sáez C. A., Contreras R. A., et al. (2019). Cadmium and/or copper excess induce interdependent metal accumulation, DNA methylation, induction of metal chelators and antioxidant defences in the seagrass Zostera marina. Chemosphere, 224, 111–119.

  • Huang, G., Ding, C., Li, Y., et al. (2020). Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.). J Hazard Mater, 398, 122860.

    Article  CAS  Google Scholar 

  • Ishimaru, Y., Takahashi, R., Bashir, K., et al. (2012). Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Science and Reports, 2, 286.

    Article  Google Scholar 

  • Jiang, F. Y., Chen, X., & Luo, A. C. (2009). Iron plauqe formation on wetland plants and its influence on phosphorus, calcium and metal uptake[J]. Aquatic Ecology, 43, 879–890.

    Article  CAS  Google Scholar 

  • John, R., Ahmad, P., Gadgil, K., et al. (2007). Antioxidative response of Lemna polyrrhiza L. to cadmium stress. Journal of Environmental Biology, 28, 583–589.

    CAS  Google Scholar 

  • Li, H., Zheng, X., Tao, L., et al. (2019). Aeration increases cadmium (Cd) retention by enhancing iron plaque formation and regulating pectin synthesis in the roots of rice (Oryza sativa) seedlings. Rice, 12, 28.

    Article  CAS  Google Scholar 

  • Li J, Liu J, Yan C, et al. The alleviation effect of iron on cadmium phytotoxicity in mangrove A. marina. Alleviation effect of iron on cadmium phytotoxicity in mangrove Avicennia marina (Forsk.) Vierh. Chemosphere 226: 413–420.

  • Lin, R., Wang, X., Luo, Y., et al. (2007). Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 69, 89–98.

    Article  CAS  Google Scholar 

  • Liu, W. J., Zhu, Y. G., Smith, F. A., et al. (2004). Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist, 162, 481–488.

    Article  CAS  Google Scholar 

  • Liu, H., Zhang, J., Christie, P., et al. (2008a). Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 394, 361–368.

    Article  CAS  Google Scholar 

  • Liu, X. H., Gao, Y. T., Sardar, K., et al. (2008b). Accumulation of Pb, Cu and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunan. Journal of Environmental Sciences, 20, 1469–1474.

    Article  CAS  Google Scholar 

  • Liu, H. J., Zhang, J. L., Christie, P., et al. (2010). Influence of iron fertilization on cadmium uptake by rice seedlings irrigated with cadmium solution. Communications in Soil Science and Plant Analysis, 41, 584–594.

    Article  CAS  Google Scholar 

  • Liu H., Yang L., Li N., et al. (2020). Cadmium toxicity reduction in rice (Oryza sativa L.) through iron addition during primary reaction of photosynthesis. Ecotoxicology and Environmental Safety, 200, 110746.

  • Liu, K., Liu, W., Jia, Z., et al. (2021). Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa vc.Qingyan No.1. Acta Pratacult Sinica, 30, 177–178.

    Google Scholar 

  • Lombi, E., Tearall, K. L., Howarth, J. R., et al. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 128, 1359–1367.

    Article  CAS  Google Scholar 

  • Ma, X., Liu, J., & Wang, M. (2013). Differences between rice cultivars in iron plaque formation on roots and plant lead tolerance. Advance Journal of Food Science and Technology, 5, 160–163.

    Article  CAS  Google Scholar 

  • Nakanishi, H., Ogawa, I., Ishimaru, Y., et al. (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIrt1 and OsIrt2 in rice. Soil Sci Plant Nutr, 52, 464–469.

    Article  CAS  Google Scholar 

  • Otte, M. L., Dekkers, M. J., Rozema, J., et al. (1991). Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation. Canadian Journal of Botany, 69, 2670–2677.

    Article  CAS  Google Scholar 

  • Perfue-Barbeoch, L., Leonhardt, N., Vavasseur, A., et al. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32, 539–548.

    Article  Google Scholar 

  • Rahman SU, Qi X, Zhao Z, et al. (2021) Alleviatory effects of silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions. Sci Rep 11: 1958.

  • Rivelli, A. R., Puschenreiter, M., & De Maria, S. (2014). Assessment of cadmium uptake and nutrient content in sunflower plants grown under Cd stress. Plant, Soil and Environment, 60, 80–86.

    Article  CAS  Google Scholar 

  • Scebba, F., Arduini, I., Ercoli, L., et al. (2006). Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plantarum, 50, 688–692.

    Article  CAS  Google Scholar 

  • Sebastian, A., & Prasad, M. N. V. (2016). Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron. Plant Biology, 18, 1008–1015.

    Article  CAS  Google Scholar 

  • Shi, G., Cai, Q., Liu, C., et al. (2010). Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation, 61, 45–52.

    Article  CAS  Google Scholar 

  • Shi, X., Zhang, X. L., Chen, G. C., et al. (2011). Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. Journal of Environmental Sciences, 23, 266–274.

    Article  CAS  Google Scholar 

  • Siddique, A. B., Rahman, M. M., & Islam, M. R. (2021). Varietal variation and formation of iron plaques on cadmium accumulation in rice seedling. Environ Adv, 5, 100075.

    Article  Google Scholar 

  • Singh, S., & Prasad, S. M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: Mechanism of toxicity amelioration by kinetin. Sci Hortic-Amsterdam, 176, 1–10.

    Article  CAS  Google Scholar 

  • Singha, K. T., Sebastian, A., & Prasad, M. N. V. (2019). Iron plaque formation in the roots of Pistia stratiotes L.: Importance in phytoremediation of cadmium. Int J Phytoremediat, 21, 120–128.

    Article  CAS  Google Scholar 

  • Sun, L., Song, K., & Shi, L. (2021). Influence of elemental sulfur on cadmium bioavailability, microbial community in paddy soil and Cd accumulation in rice plants. Sci Hortic-Amsterdam, 11, 11468.

    CAS  Google Scholar 

  • Taylor, G. J., & Crowder, A. A. (1983). Use of DCB technique for extraction of hydrous iron oxides from roots of wetland plants. American Journal of Botany, 70, 1254–1257.

    Article  CAS  Google Scholar 

  • Thomine, S., Wang, R., Ward, J. M., et al. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arbidopsis with homology to Nramp genes. P Natl Acad Sci USAmerica, 97, 4991–4996.

    Article  CAS  Google Scholar 

  • Tian, R. N., Yu, S., Wang, S. G., et al. (2013). Heavy metal tolerance and accumulation of Triarrhena sacchariflora, a large amphibious ornamental grass. Water Science and Technology, 68, 1795–1800.

    Article  CAS  Google Scholar 

  • Wei, T., Liu, X., Dong, M. F., et al. (2021). Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.). J Environ Manage, 278, 111533.

    Article  CAS  Google Scholar 

  • Xin, J. P., Zhang, Y., & Tian, R. N. (2018). Tolerance mechanism of Triarrhena sacchariflora (Maxim.) Nakai. seedlings to lead and cadmium: Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure. Ecotox Environ Safe, 165, 611–621.

    Article  CAS  Google Scholar 

  • Xin, J. P., Tang, J. Y., Liu, Y. L., et al. (2019). Pre-aeration of the rhizosphere offers potential for phytoremediation of heavy metal-contaminated wetlands. Journal of Hazardous Materials, 374, 437–446.

    Article  CAS  Google Scholar 

  • Xu, B., Yu, S., Ding, J., et al. (2015). Metal-dependent root iron plaque effects on distribution and translocation of chromium and nickel in yellow flag (Iris pseudacorus L.). Int J Phytoremediat, 17, 175–181.

    Article  CAS  Google Scholar 

  • Xu, B., Wang, F., Zhang, Q., et al. (2018). Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings: Insights from hydroponic and soil cultivation. Ecotox Environ Safe, 162, 51–58.

    Article  CAS  Google Scholar 

  • Ye, Z., Baker, A. J. M., Wong, M. H., et al. (1997). Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytologist, 136, 481–488.

    Article  CAS  Google Scholar 

  • Ye, Z., Baker, A. J. M., Wong, M. H., et al. (1998). Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquatic Botany, 61, 55–67.

    Article  CAS  Google Scholar 

  • Zandi, P., Yang, J., Xia, X., et al. (2021). Sulphur nutrition and iron plaque formation on roots of rice seedlings and their consequences for immobilisation and uptake of chromium in solution culture. Plant and Soil, 462, 365–388.

    Article  CAS  Google Scholar 

  • Zhang, X. K., Zhang, F. S., & Mao, D. R. (1998). Effect of root iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.). zinc upatke by Fe-deficient rice. Plant and Soil, 202, 33–39.

    Article  CAS  Google Scholar 

  • Zhang, Z., Liu, C., Wang, X., et al. (2013). Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Physiol Plantarum, 35, 2105–2013.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, X., Gao, B., et al. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum × P. purpureum). Biomass and Bioenergy, 67, 179–187.

    Article  CAS  Google Scholar 

  • Zhang, Q., Yan, Z., & Li, X. (2020). Ferrous iron facilitates the formation of iron plaque and enhances the tolerance of Spartina alterniflora to artificial sewage stress. Mar Pollut Bull, 157, 111379.

    Article  CAS  Google Scholar 

  • Zhang, J. Y., Zhou, H., Zeng, P., et al. (2021). Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root. Chemosphere, 276, 130212.

    Article  CAS  Google Scholar 

  • Zhao, Y., Zhang, C., Wang, C., et al. (2020). Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice. Environ Pollut, 257, 113496.

    Article  CAS  Google Scholar 

  • Zhou, H., Zeng, M., Zhou, X., et al. (2015). Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant and Soil, 386, 317–329.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support provided by the Advanced Analysis and Testing Center (AATC) of Nanjing Forestry University. We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

The present investigation was funded by the National Natural Science Foundation of China (No. 30972408), the China Postdoctoral Science Foundation (2020M671509), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runan Tian.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, J., Tang, J., Tian, R. et al. The Role of Iron Plaque in Miscanthus sacchariflorus Seedling Growth, Cadmium Uptake, and Translocation. Water Air Soil Pollut 233, 32 (2022). https://doi.org/10.1007/s11270-022-05502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05502-2

Keywords

Navigation