Skip to main content

Advertisement

Log in

Exploring Potentials and Constraints of H2O2 Water Disinfection for Household Settings

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Poor sanitation facilities and deficiencies in infrastructure lead to a scenario of waterborne diseases, particularly in low-income regions. Point-of-use (POU) and point-of-entry (POE) solutions may be potential interventions for a positive impact in public health, complying with the United Nations Sustainable Development Goal of safe and affordable water for all (SDG 6). Chlorination is a common POU practice, thus benchmarking disinfection against it could be beneficial for finding alternative household-scale approaches. Here, we explored hydrogen peroxide, a well-known and commercially available oxidant, as a standalone disinfectant targeting Escherichia coli and Phi X174 bacteriophage as a model of enteric viruses, common pathogens found in source waters. Oxidation of natural organic matter (NOM) was also assessed by photometric assays. A 30-min exposure to H2O2 at 0.3% provided > 6.5 log10-inactivation of phage, whereas chlorine reached approximately 3.0. When exclusively targeting bacteria, both disinfectants were considered efficient, but, when Phi X174 was included, only H2O2 satisfied criteria. Chlorine oxidation performance was considered sufficient; however, NOM variations obtained by H2O2 treatments should be further assessed. Though some limitations are discussed, particularly considering residuals, these are taken as directions for investigating practical applications. Overall, results suggest H2O2 is a potential standalone POU disinfectant, encouraging research on context-specific household settings or emergency scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that all relevant data are included in the article and its supplementary information file.

References

  • APHA, AWWA, & WEF. (2012). Standard methods for the examination of water and wastewater. (E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri, Eds.) (22nd ed.). Washington, DC.

  • Arvin, E., & Pedersen, L. F. (2015). Hydrogen peroxide decomposition kinetics in aquaculture water. Aquacultural Engineering, 64, 1–7. https://doi.org/10.1016/j.aquaeng.2014.12.004

    Article  Google Scholar 

  • Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2017). Twort’s water supply. Elsevier. https://doi.org/10.1016/C2012-0-06331-4

  • Brauge, T., Faille, C., Leleu, G., Denis, C., Hanin, A., & Midelet, G. (2020). Treatment with disinfectants may induce an increase in viable but non culturable populations of Listeria monocytogenes in biofilms formed in smoked salmon processing environments. Food Microbiology, 92, 103548. https://doi.org/10.1016/j.fm.2020.103548

    Article  CAS  Google Scholar 

  • Brown, J., & Sobsey, M. D. (2010). Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia. Journal of Water and Health, 8(1), 1–10. https://doi.org/10.2166/wh.2009.007

    Article  CAS  Google Scholar 

  • Choi, J. O., & Lee, Y. H. (2020). Effect of sanitizers and disinfectants in Staphylococcus saprophyticus. Medico-Legal Update, 20(1), 2064–2068. https://doi.org/10.37506/v20/i1/2020/mlu/194610

    Article  Google Scholar 

  • Ehdaie, B., Su, Y.-H., Swami, N. S., & Smith, J. A. (2020). Protozoa and virus disinfection by silver- and copper-embedded ceramic tablets for water purification. Journal of Environmental Engineering, 146(4), 04020015. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001664

    Article  CAS  Google Scholar 

  • Emelko, M. B., Schmidt, P. J., & Borchardt, M. A. (2019). Confirming the need for virus disinfection in municipal subsurface drinking water supplies. Water Research, 157, 356–364. https://doi.org/10.1016/j.watres.2019.03.057

    Article  CAS  Google Scholar 

  • Flores, M. J., Brandi, R. J., Cassano, A. E., & Labas, M. D. (2012). Chemical disinfection with H2O2 - the proposal of a reaction kinetic model. Chemical Engineering Journal, 198–199, 388–396. https://doi.org/10.1016/j.cej.2012.05.107

    Article  CAS  Google Scholar 

  • Formisano, F., Fiorentino, A., Rizzo, L., Carotenuto, M., Pucci, L., Giugni, M., & Lofrano, G. (2016). Inactivation of Escherichia coli and Enterococci in urban wastewater by sunlight/PAA and sunlight/H2O2 processes. Process Safety and Environmental Protection, 104, 178–184. https://doi.org/10.1016/j.psep.2016.09.003

    Article  CAS  Google Scholar 

  • Genter, F., Willetts, J., & Foster, T. (2021). Faecal contamination of groundwater self-supply in low- and middle income countries: Systematic review and meta-analysis. Water Research, 201, 117350. https://doi.org/10.1016/j.watres.2021.117350

    Article  CAS  Google Scholar 

  • Goslan, E. H., Krasner, S. W., Bower, M., Rocks, S. A., Holmes, P., Levy, L. S., & Parsons, S. A. (2009). A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. Water Research, 43(18), 4698–4706. https://doi.org/10.1016/j.watres.2009.07.029

    Article  CAS  Google Scholar 

  • Government of Sudan (2017). Protocols for the chlorination of drinking water (for small to medium sized supplies), Government of Sudan Federal Ministry of Health Ministry of Water Resources, Irrigation and Electricity. 1–58.

  • Gray, N. F. (2013). Pathogen control in drinking water. Microbiology of waterborne diseases: microbiological aspects and risks: Second Edition (Second Edi.). Elsevier. https://doi.org/10.1016/B978-0-12-415846-7.00030-5

  • Guadagnini, R. A., dos Santos, L. U., Franco, R. M. B., & Guimarães, J. R. (2013). Inactivation of bacteria and helminth in wastewater treatment plant effluent using oxidation processes. Water Science and Technology, 68(8), 1825–1829. https://doi.org/10.2166/wst.2013.431

    Article  CAS  Google Scholar 

  • Guimarães, J. R., Franco, R. M. B., Guadagnini, R. A., & dos Santos, L. U. (2014). Giardia duodenalis : Number and fluorescence reduction caused by the advanced oxidation process (H2O2 /UV). International Scholarly Research Notices, 2014, 1–7. https://doi.org/10.1155/2014/525719

    Article  Google Scholar 

  • Guo, X., Wang, S., Zhao, C., Li, J., & Zhong, J. (2018). An integrated cell absorption process and quantitative PCR assay for the detection of the infectious virus in water. Science of the Total Environment, 635, 964–971. https://doi.org/10.1016/j.scitotenv.2018.04.223

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1).

  • Hata, A., Katayama, H., Kojima, K., Sano, S., Kasuga, I., Kitajima, M., & Furumai, H. (2014). Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows. Science of the Total Environment, 468–469, 757–763. https://doi.org/10.1016/j.scitotenv.2013.08.093

    Article  CAS  Google Scholar 

  • Hayrapetyan, H., Nederhoff, L., Vollebregt, M., Mastwijk, H., & Nierop Groot, M. (2020). Inactivation kinetics of Geobacillus stearothermophilus spores by a peracetic acid or hydrogen peroxide fog in comparison to the liquid form. International Journal of Food Microbiology, 316(October 2019), 108418. doi:https://doi.org/10.1016/j.ijfoodmicro.2019.108418

  • Hidber, T., Pauli, U., Steiner, A., & Kuhnert, P. (2020). In vitro and ex vivo testing of alternative disinfectants to currently used more harmful substances in footbaths against Dichelobacter nodosus. PLoS ONE, 15(2), e0229066. https://doi.org/10.1371/journal.pone.0229066

    Article  CAS  Google Scholar 

  • Hu, J., Chu, W., Sui, M., Xu, B., Gao, N., & Ding, S. (2018). Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination. Chemical Engineering Journal, 335, 352–361. https://doi.org/10.1016/j.cej.2017.10.144

    Article  CAS  Google Scholar 

  • Ji, P., Aw, T. G., Van Bonn, W., & Rose, J. B. (2020). Evaluation of a portable nanopore-based sequencer for detection of viruses in water. Journal of Virological Methods, 278, 113805. https://doi.org/10.1016/j.jviromet.2019.113805

    Article  CAS  Google Scholar 

  • Karel, F. B. (2018). Determining the effect of system parameters on ultrasonic water disinfection and enhancing its efficiency with a hybrid application. Journal of Environmental Biology, 39(5), 597–602. https://doi.org/10.22438/jeb/39/5/MRN-427

    Article  CAS  Google Scholar 

  • Kim, D. K., Kim, S. J., & Kang, D. H. (2017). Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system. Food Research International, 91, 115–123. https://doi.org/10.1016/j.foodres.2016.11.042

    Article  Google Scholar 

  • Koivunen, J., & Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 39(8), 1519–1526. https://doi.org/10.1016/j.watres.2005.01.021

    Article  CAS  Google Scholar 

  • Kolar, S. S. N., Manarang, J. C., Burns, A. R., Miller, W. L., McDermott, A. M., & Bergmanson, J. P. G. (2015). Contact lens care solution killing efficacy against Acanthamoeba castellanii by in vitro testing and live-imaging. Contact Lens and Anterior Eye, 38(6), 442–450. https://doi.org/10.1016/j.clae.2015.06.006

    Article  Google Scholar 

  • Lantagne, D., & Clasen, T. (2009). Point of use water treatment in emergency response. London, UK: London School of Hygiene and Tropical Medicine.

  • Lau, M., Monis, P., Ryan, G., Salveson, A., Fontaine, N., Blackbeard, J., et al. (2020). Selection of surrogate pathogens and process indicator organisms for pasteurisation of municipal wastewater—a survey of literature data on heat inactivation of pathogens. Process Safety and Environmental Protection, 133, 301–314. https://doi.org/10.1016/j.psep.2019.11.011

    Article  CAS  Google Scholar 

  • Lugo, J. L., Lugo, E. R., & de la Puente, M. (2021). A systematic review of microorganisms as indicators of recreational water quality in natural and drinking water systems. Journal of Water and Health, 19(1), 20–28. https://doi.org/10.2166/wh.2020.179

    Article  Google Scholar 

  • Marchesi, I., Ferranti, G., Mansi, A., Marcelloni, A. M., Proietto, A. R., Saini, N., et al. (2016). Control of Legionella contamination and risk of corrosion in hospital water networks following various disinfection procedures. Applied and Environmental Microbiology, 82(10), 2959–2965. https://doi.org/10.1128/AEM.03873-15

    Article  CAS  Google Scholar 

  • Masachessi, G., Prez, V. E., Michelena, J. F., Lizasoain, A., Ferreyra, L. J., Martínez, L. C., et al. (2020). Proposal of a pathway for enteric virus groups detection as indicators of faecal contamination to enhance the evaluation of microbiological quality in freshwater in Argentina. Science of The Total Environment, 143400. https://doi.org/10.1016/j.scitotenv.2020.143400

  • Mazhar, M. A., Khan, N. A., Ahmed, S., Khan, A. H., Hussain, A., Rahisuddin, et al. (2020). Chlorination disinfection by-products in municipal drinking water – a review. Journal of Cleaner Production, 273. https://doi.org/10.1016/j.jclepro.2020.123159

  • Melo, E. F., Clímaco, W. L. S., Triginelli, M. V., Vaz, D. P., de Souza, M. R., Baião, N. C., et al. (2019). An evaluation of alternative methods for sanitizing hatching eggs. Poultry Science, 98(6), 2466–2473. https://doi.org/10.3382/ps/pez022

    Article  CAS  Google Scholar 

  • Moore, N., Ebrahimi, S., Zhu, Y., Wang, C., Hofmann, R., & Andrews, S. (2021). A comparison of sodium sulfite, ammonium chloride, and ascorbic acid for quenching chlorine prior to disinfection byproduct analysis. Water Supply, 1–11. https://doi.org/10.2166/ws.2021.059

  • Motola, G., Hafez, H. M., & Brüggemann-Schwarze, S. (2020). Efficacy of six disinfection methods against extended-spectrum beta-lactamase (ESBL) producing E. coli on eggshells in vitro. PLOS ONE, 15(9), e0238860. https://doi.org/10.1371/journal.pone.0238860

  • Mraz, A. L., Tumwebaze, I. K., McLoughlin, S. R., McCarthy, M. E., Verbyla, M. E., Hofstra, N., et al. (2021). Why pathogens matter for meeting the united nations’ sustainable development goal 6 on safely managed water and sanitation. Water Research, 189, 116591. https://doi.org/10.1016/j.watres.2020.116591

    Article  CAS  Google Scholar 

  • Okoro, B. U., Sharifi, S., Jesson, M., Bridgeman, J., & Moruzzi, R. (2021). Characterisation and performance of three Kenaf coagulation products under different operating conditions. Water Research, 188, 116517. https://doi.org/10.1016/j.watres.2020.116517

    Article  CAS  Google Scholar 

  • Oon, A., Reading, E., Ferguson, J. K., Dancer, S. J., & Mitchell, B. G. (2020). Measuring environmental contamination in critical care using dilute hydrogen peroxide (DHP) technology: An observational cross-over study. Infection, Disease & Health, 25(2), 107–112. https://doi.org/10.1016/j.idh.2019.12.005

    Article  CAS  Google Scholar 

  • Ortiz-Solà, J., Abadias, M., Colás-Medà, P., Sánchez, G., Bobo, G., & Viñas, I. (2020). Evaluation of a sanitizing washing step with different chemical disinfectants for the strawberry processing industry. International Journal of Food Microbiology, 334, 108810. https://doi.org/10.1016/j.ijfoodmicro.2020.108810

    Article  CAS  Google Scholar 

  • Pang, X., Gao, T., Qiu, Y., Caffrey, N., Popadynetz, J., Younger, J., et al. (2021). The prevalence and levels of enteric viruses in groundwater of private wells in rural Alberta, Canada. Water Research, 117425. https://doi.org/10.1016/j.watres.2021.117425

  • Pooi, C. K., & Ng, H. Y. (2018). Review of low-cost point-of-use water treatment systems for developing communities. npj Clean Water, 1(1). https://doi.org/10.1038/s41545-018-0011-0

  • Romeu, M. J., Rodrigues, D., & Azeredo, J. (2020). Effect of sub-lethal chemical disinfection on the biofilm forming ability, resistance to antibiotics and expression of virulence genes of Salmonella enteritidis biofilm-surviving cells. Biofouling, 36(1), 101–112. https://doi.org/10.1080/08927014.2020.1719077

    Article  CAS  Google Scholar 

  • Rosende, M., Miró, M., Salinas, A., Palerm, A., Laso, E., Frau, J., et al. (2020). Cost-effectiveness analysis of chlorine-based and alternative disinfection systems for pool waters. Journal of Environmental Engineering, 146(1), 04019094. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001610

    Article  CAS  Google Scholar 

  • Savichtcheva, O., & Okabe, S. (2006). Alternative indicators of fecal pollution: Relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Research, 40(13), 2463–2476. https://doi.org/10.1016/j.watres.2006.04.040

    Article  CAS  Google Scholar 

  • Scano, A., Serafi, G., Fais, S., Bomboi, S., Peri, M., Ibba, A., et al. (2019). Antimicrobial susceptibility pattern to disinfectants in Pseudomonas aeruginosa strains isolated from dairy sheep breeds in Sardinia. Large Animal Review, 25, 11–15.

    Google Scholar 

  • Shi, Q., Chen, Z., Liu, H., Lu, Y., Li, K., Shi, Y., et al. (2021). Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. Science of the Total Environment, 758. https://doi.org/10.1016/j.scitotenv.2020.143641

  • Subbaraman, R., Shitole, S., Shitole, T., Sawant, K., O’Brien, J., Bloom, D. E., & Patil-Deshmukh, A. (2013). The social ecology of water in a Mumbai slum: Failures in water quality, quantity, and reliability. BMC Public Health, 13(1), 173. https://doi.org/10.1186/1471-2458-13-173

    Article  Google Scholar 

  • Totaro, M., Casini, B., Profeti, S., Tuvo, B., Privitera, G., & Baggiani, A. (2020). Role of hydrogen peroxide vapor (HPV) for the disinfection of hospital surfaces contaminated by multiresistant bacteria. Pathogens, 9(5). https://doi.org/10.3390/pathogens9050408

  • Tuvo, B., Totaro, M., Cristina, M. L., Spagnolo, A. M., Di Cave, D., Profeti, S., et al. (2020). Prevention and control of Legionella and Pseudomonas spp. colonization in dental units. Pathogens, 9(4), 305. https://doi.org/10.3390/pathogens9040305

  • USEPA - United States Environment Protection Agency. (2001). Male-specific (F+) and somatic coliphage in water by two-step enrichment procedure. Washington, DC.: Office of Water, Engineering and Analysis Division.

  • Wagner, E. J., Oplinger, R. W., & Bartley, M. (2012). Effect of single or double exposures to hydrogen peroxide or iodine on salmonid egg survival and bacterial growth. North American Journal of Aquaculture, 74(1), 84–91. https://doi.org/10.1080/15222055.2011.649887

    Article  Google Scholar 

  • Wang, C., Hofmann, M., Safari, A., Viole, I., Andrews, S., & Hofmann, R. (2019). Chlorine is preferred over bisulfite for H2O2 quenching following UV-AOP drinking water treatment. Water Research, 165, 115000. https://doi.org/10.1016/j.watres.2019.115000

    Article  CAS  Google Scholar 

  • Wang, H., Kjellberg, I., Sikora, P., Rydberg, H., Lindh, M., Bergstedt, O., & Norder, H. (2020a). Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water. Water Research, 168, 115141. https://doi.org/10.1016/j.watres.2019.115141

    Article  CAS  Google Scholar 

  • Wang, S., Chen, J., Wakeling, C., Bach, S., Orban, S., & Delaquis, P. (2020b). Disinfection of alfalfa and radish sprouting seed using oxidizing agents and treatments compliant with organic food production principles. Journal of Food Protection, 83(5), 779–787. https://doi.org/10.4315/JFP-19-508

    Article  CAS  Google Scholar 

  • WHO, W. H. O. (2011). Guidelines for drinking-water quality. 4th edition. Geneva.

  • WHO, W. H. O. (2014). WHO international scheme to evaluate household water treatment technologies harmonized testing protocol: technology non-specific, (2014), 22. www.who.int/entity/household_water/scheme/HarmonizedTestProtocol.pdf?ua=1

  • WHO; UNICEF. (2020). State of the world’s sanitation: an urgent call to transform sanitation for better health, environments, economies and societies. (J. Sinden, Ed.). New York: United Nations Children’s Fund (UNICEF) and the World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/336688/9789240014473-eng.pdf

  • Wlazlo, L., Drabik, K., Al-Shammari, K. I. A., Batkowska, J., Nowakowicz-Debek, B., & Gryzińska, M. (2020). Use of reactive oxygen species (ozone, hydrogen peroxide) for disinfection of hatching eggs. Poultry Science, 99(5), 2478–2484. https://doi.org/10.1016/j.psj.2019.12.039

    Article  CAS  Google Scholar 

  • Wu, H., & Dorea, C. C. (2021). Evaluation and application of chlorine decay models for humanitarian emergency water supply contexts. Environmental Technology (United Kingdom), 1–10. https://doi.org/10.1080/09593330.2021.1920626

  • Wu, T., & Englehardt, J. D. (2012). A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand. Environmental Science & Technology, 46(4), 2291–2298. https://doi.org/10.1021/es204250k

    Article  CAS  Google Scholar 

  • Yamasaki, K., Mizuno, Y., Kitamura, Y., McCanna, D. J., Ngo, W., & Jones, L. W. (2020). The efficacy of povidone-iodine, hydrogen peroxide and a chemical multipurpose contact lens care system against Pseudomonas aeruginosa on various lens case surfaces. Contact Lens and Anterior Eye. https://doi.org/10.1016/j.clae.2020.02.012

    Article  Google Scholar 

  • Yang, Q., Rivailler, P., Zhu, S., Yan, D., Xie, N., Tang, H., et al. (2021). Detection of multiple viruses potentially infecting humans in sewage water from Xinjiang Uygur Autonomous Region China. Science of the Total Environment, 754, 142322. https://doi.org/10.1016/j.scitotenv.2020.142322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. Natália de Melo Nasser Fava for growing phage stocks.

Funding

The Global Challenges Research Fund (GCRF) UK Research and Innovation (SAFEWATER; EPSRC Grant Reference EP/P032427/1) supported this work. The Coordination for the Improvement of Higher Education Personnel (CAPES-PROEX – Financial code 001) granted Kamila Jessie Sammarro Silva with a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyda Patricia Sabogal-Paz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 182 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, K.J.S., Sabogal-Paz, L.P. Exploring Potentials and Constraints of H2O2 Water Disinfection for Household Settings. Water Air Soil Pollut 232, 483 (2021). https://doi.org/10.1007/s11270-021-05434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05434-3

Keywords

Navigation