Skip to main content

Advertisement

Log in

Multi-Response/Multi-Step Optimization of Heterogeneous Fenton Process with Fe3O4 Catalyst for the Treatment of Landfill Leachate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Since conventional biological treatment methods are not sufficient alone to treat landfill leachate, this study investigated the efficacy of the heterogeneous Fenton process as a preliminary treatment technique. With this aim, a two-level factorial design combined with the response surface methodology (RSM) was used to optimize the operating parameters for the heterogeneous Fenton process used for treatment of leachate. The surface morphology and elemental analysis of Fe3O4 nanoparticles used in the heterogeneous Fenton process were completed with scanning electron microscope (SEM), energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FT-IR). In order to obtain maximum 75% chemical oxygen demand (COD) removal for treatment of leachate with the heterogeneous Fenton process, the optimum conditions for H2O2 and Fe3O4 dosages, stirring rate and initial pH parameters were 800 mg/L, 334.54 mg/L, 255 rpm and 3.34, respectively. The results obtained show the heterogeneous Fenton process abides by the second-order model (R2 = 0.9896), and the variables mentioned above were confirmed to significantly affect the COD removal efficiency. Response surface graphs show the use of higher pH and chemical agents do not increase the COD removal efficiency. This study proves the applicability of the multi-response optimization program for treatment of leachate from a landfill site representing a serious problem in environmental terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author (SS) upon reasonable request.

References

  • Abedinzadeh, N., Shariat, M., Monavari, S. M., & Pendashteh, A. (2018). Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater. Process Safety and Environmental Protection, 116, 82–91.

    Article  CAS  Google Scholar 

  • Antony, J., Niveditha, S. V., Gandhimathi, R., Ramesh, S. T., & Nidheesh, P. V. (2020). Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process. Waste Management, 106, 1–11.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association). (2012). Standard methods for the examination of water and wastewater (22nd ed.) Washington D.C.

  • Ateia, M., Apul, O. G., Shimizu, Y., Muflihah, A., Yoshimura, C., & Karanfil, T. (2017). Elucidating adsorptive fractions of natural organic matter on carbon nanotubes. Environmental Science & Technology, 51(12), 7101–7110.

    Article  CAS  Google Scholar 

  • Benatti, C. T., Tavares, C. R. G., & Guedes, T. A. (2006). Optimization of Fenton’s oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management, 80(1), 66–74.

    Article  CAS  Google Scholar 

  • Biglarijoo, N., Mirbagheri, S. A., Ehteshami, M., & Ghaznavi, S. M. (2016). Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment. Process Safety and Environmental Protection, 104, 150–160.

    Article  CAS  Google Scholar 

  • Chen, F., Tang, D., Wang, Y., Li, T., & Ma, J. (2020). Integration of homogeneous and heterogeneous advanced oxidation processes: Confined iron dancing with cyclodextrin polymer. Chemosphere, 250, 126226.

    Article  CAS  Google Scholar 

  • Choe, Y. J., Byun, J. Y., Kim, S. H., & Kim, J. (2018). Fe3S4/Fe7S8-promoted degradation of phenol via heterogeneous, catalytic H2O2 scission mediated by S-modified surface Fe2+ species. Applied Catalysis b: Environmental, 233, 272–280.

    Article  CAS  Google Scholar 

  • Cotman, M., & Gotvajn, A. Z. (2010). Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate. Journal of Hazardous Materials, 178(1–3), 298–305.

    Article  CAS  Google Scholar 

  • Deng, Y., & Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683–3694.

    Article  CAS  Google Scholar 

  • Deng, Y., Zhu, X., Chen, N., Feng, C., Wang, H., Kuang, P., & Hu, W. (2020). Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Science of the Total Environment, 745, 140768.

    Article  CAS  Google Scholar 

  • Gautam, R. K., Gautam, P. K., Banerjee, S., Soni, S., Singh, S. K., & Chattopadhyaya, M. C. (2015). Removal of Ni (II) by magnetic nanoparticles. Journal of Molecular Liquids, 204, 60–69.

    Article  CAS  Google Scholar 

  • Gebremedhin, M., Mishra, S., & Mohanty, K. (2018). Augmentation of native microalgae based biofuel production through statistical optimization of campus sewage wastewater as low-cost growth media. Journal of Environmental Chemical Engineering, 6(5), 6623–6632.

    Article  CAS  Google Scholar 

  • Göde, J. N., Souza, D. H., Trevisan, V., & Skoronski, E. (2019). Application of the Fenton and Fenton-like processes in the landfill leachate tertiary treatment. Journal of Environmental Chemical Engineering, 7, 103352.

    Article  CAS  Google Scholar 

  • Gonçalves, N. P. F., Minella, M., Fabbri, D., Calza, P., Malitesta, C., Mazzotta, E., & Prevot, A. B. (2020). Humic acid coated magnetic particles as highly efficient heterogeneous T photo-Fenton materials for wastewater treatments. Chemical Engineering Journal, 390, 124619.

    Article  CAS  Google Scholar 

  • Gregory, J., & Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemistry, 73(12), 2017–2026.

    Article  CAS  Google Scholar 

  • Guvenc, S. Y., & Varank, G. (2021). Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization. Frontiers of Environmental Science & Engineering, 15(1), 1–16.

    CAS  Google Scholar 

  • Hassani, A., Karaca, M., Karaca, S., Khataee, A., Açışlı, Ö., & Yılmaz, B. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53–62.

    Article  CAS  Google Scholar 

  • He, J., Ma, W., He, J., Zhao, J., & Jimmy, C. Y. (2002). Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH. Applied Catalysis b: Environmental, 39(3), 211–220.

    Article  CAS  Google Scholar 

  • Hu, X., Liu, B., Deng, Y., Chen, H., Luo, S., Sun, C., Yang, P., & Yang, S. (2011). Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Applied Catalysis b: Environmental, 107(3–4), 274–283.

    Article  CAS  Google Scholar 

  • Huang, Z., & Tang, F. (2005). Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. Journal of Colloid and Interface Science, 281(2), 432–436.

    Article  CAS  Google Scholar 

  • Islam, M. A., Sakkas, V., & Albanis, T. A. (2009). Application of statistical design of experiment with desirability function for the removal of organophosphorus pesticide from aqueous solution by low-cost material. Journal of Hazardous Materials, 170(1), 230–238.

    Article  CAS  Google Scholar 

  • Jayson, G. G., Keene, J. P., Stirling, D. A., & Swallow, A. J. (1969). Pulse-radiolysis study of some unstable complexes of iron. Transactions of the Faraday Society, 65, 2453–2464.

    Article  CAS  Google Scholar 

  • Jeirani, Z., Jan, B. M., Ali, B. S., Noor, I. M., See, C. H., & Saphanuchart, W. (2013). Prediction of the optimum aqueous phase composition of a triglyceride microemulsion using response surface methodology. Journal of Industrial and Engineering Chemistry, 19(4), 1304–1309.

    Article  CAS  Google Scholar 

  • Jiang, H., Sun, Y., Feng, J., & Wang, J. (2016). Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles. Water Science and Technology, 74(5), 1116–1126.

    Article  CAS  Google Scholar 

  • Kalantary, R. R., Farzadkia, M., Kermani, M., & Rahmatinia, M. (2018). Heterogeneous electro-Fenton process by nano-Fe3O4 for catalytic degradation of amoxicillin: Process optimization using response surface methodology. Journal of Environmental Chemical Engineering, 6(4), 4644–4652.

    Article  CAS  Google Scholar 

  • Karimipourfard, D., Eslamloueyan, R., & Mehranbod, N. (2020). Heterogeneous degradation of stabilized landfill leachate using persulfate activation by CuFe2O4 nanocatalyst: An experimental investigation. Journal of Environmental Chemical Engineering, 8(2), 103426.

    Article  CAS  Google Scholar 

  • Khataee, A., Taseidifar, M., Khorram, S., Sheydaei, M., & Joo, S. W. (2015). Preparation of nanostructured magnetite with plasma for degradation of a cationic textile dye by the heterogeneous Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 53, 132–139.

    Article  CAS  Google Scholar 

  • Kliś, S., Thomas, M., Barbusiński, K., Gołombek, K., Krzemiński, Ł, & Chyc, M. (2019). Removal of azo dye Acid Red 27 from aqueous solutions using classical and modified Fenton reagent with zero-valent iron. Fibres & Textiles in Eastern Europe, 137, 100–106.

    Google Scholar 

  • Körbahti, B. K., & Tanyolaç, A. (2008). Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology. Journal of Hazardous Materials, 151(2–3), 422–431.

    Article  CAS  Google Scholar 

  • Koymatcik, C., Ozkaymak, M., & Selimli, S. (2018). Recovery of iron particles from wastewater treatment plant of an iron and steel factory. Engineering Science and Technology, an International Journal, 21(3), 284–288.

    Article  Google Scholar 

  • Kurniawan, T. A., Lo, W. H., & Chan, G. Y. (2006). Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. Journal of Hazardous Materials, 129(1–3), 80–100.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2002). Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental Science & Technology, 36(7), 1467–1476.

    Article  CAS  Google Scholar 

  • Labiadh, L., Fernandes, A., Ciríaco, L., Pacheco, M. J., Gadri, A., Ammar, S., & Lopes, A. (2016). Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate. Journal of Environmental Management, 181, 515–521.

    Article  CAS  Google Scholar 

  • Laiju, A. R., Sivasankar, T., & Nidheesh, P. V. (2014). Iron-loaded mangosteen as a heterogeneous Fenton catalyst for the treatment of landfill leachate. Environmental Science and Pollution Research, 21(18), 10900–10907.

    Article  CAS  Google Scholar 

  • Lak, M. G., Sabour, M. R., Amiri, A., & Rabbani, O. (2012). Application of quadratic regression model for Fenton treatment of municipal landfill leachate. Waste Management, 32(10), 1895–1902.

    Article  CAS  Google Scholar 

  • Li, H., Zhou, S., Sun, Y., & Lv, J. (2010). Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton’s reagent. Waste Management, 30(11), 2122–2129.

    Article  CAS  Google Scholar 

  • Li, Y., Li, X., Han, D., Huang, W., & Yang, C. (2017). New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo- and tetrachlorobisphenol A. Chemical Engineering Journal, 311, 173–182.

    Article  CAS  Google Scholar 

  • Lopez, A., Pagano, M., Volpe, A., & Di Pinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54(7), 1005–1010.

    Article  CAS  Google Scholar 

  • Mahtab, M. S., Islam, D. T., & Farooqi, I. H. (2021). Optimization of the process variables for landfill leachate treatment using Fenton-based advanced oxidation technique. Engineering Science and Technology, an International Journal, 24(2), 428–435.

  • Mateen, Q. S., Khan, S. U., Islam, D. T., Khan, N. A., & Farooqi, I. H. (2020). Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design. Water Environment Research, 92(9), 1350–1362.

  • Meriç, S., Kaptan, D., & Ölmez, T. (2004). Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54(3), 435–441.

    Article  CAS  Google Scholar 

  • Mohajeri, S., Aziz, H. A., Isa, M. H., Bashir, M. J., Mohajeri, L., & Adlan, M. N. (2010). Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate. Journal of Environmental Science and Health Part A, 45(6), 692–698.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169(1–3), 351–359.

    Article  CAS  Google Scholar 

  • Mulak, W., Balaž, P., & Chojnacka, M. (2002). Chemical and morphological changes of millerite by mechanical activation. International Journal of Mineral Processing, 66(1–4), 233–240.

    Article  CAS  Google Scholar 

  • Niveditha, S. V., & Gandhimathi, R. (2020a). Flyash augmented Fe3O4 as a heterogeneous catalyst for degradation of stabilized landfill leachate in Fenton process. Chemosphere, 242, 125189.

    Article  CAS  Google Scholar 

  • Niveditha, S. V., & Gandhimathi, R. (2020b). Mineralization of stabilized landfill leachate by heterogeneous Fenton process with RSM optimization. Separation Science and Technology, 1–10.

  • Öztürk, D., & Şahan, T. (2015). Design and Optimization of Cu (II) Adsorption Conditions from Aqueous Solutions by Low-Cost Adsorbent Pumice with Response Surface Methodology. Polish Journal of Environmental Studies, 24(4).

  • Ozturk, D., & Yilmaz, A. E. (2020). Investigation of electrochemical degradation of Basic Red 13 dye in aqueous solutions based on COD removal: Numerical optimization approach. International Journal of Environmental Science and Technology, 1–12.

  • Ozturk, D., Dagdas, E., Fil, B. A., & Bashir, M. J. (2021). Central composite modeling for electrochemical degradation of paint manufacturing plant wastewater: One-step/two-response optimization. Environmental Technology & Innovation, 21, 101264.

  • Ozturk, D., Sahan, T., Bayram, T., & Erkus, A. (2017). Application of response surface methodology (RSM) to optimize the adsorption conditions of cationic basic yellow 2 onto pumice samples as a new adsorbent. Fresenius Environmental Bulletin, 26, 3285–3295.

    CAS  Google Scholar 

  • Pham, V. L., Kim, D. G., & Ko, S. O. (2018). Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate. Chemosphere, 191, 639–650.

    Article  CAS  Google Scholar 

  • Priyadharshini, S. D., & Bakthavatsalam, A. K. (2016). Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology. Bioresource Technology, 207, 150–156.

    Article  CAS  Google Scholar 

  • Ramirez, J. H., Maldonado-Hódar, F. J., Pérez-Cadenas, A. F., Moreno-Castilla, C., Costa, C. A., & Madeira, L. M. (2007). Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis b: Environmental, 75(3–4), 312–323.

    Article  CAS  Google Scholar 

  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.

    Article  CAS  Google Scholar 

  • Rusevova, K., Kopinke, F. D., & Georgi, A. (2012). Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 241–242, 433–440.

    Article  CAS  Google Scholar 

  • Rush, J. D., & Bielski, B. H. (1985). Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2-with iron (II)/iron (III) ions. The reactivity of HO2/O2-with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. The Journal of Physical Chemistry, 89(23), 5062–5066.

    Article  CAS  Google Scholar 

  • Sabour, M. R., Lak, M. G., & Rabbani, O. (2011). Evaluation of the main parameters affecting the Fenton oxidation process in municipal landfill leachate treatment. Waste Management & Research, 29(4), 397–405.

    Article  CAS  Google Scholar 

  • Şahan, T., & Öztürk, D. (2014). Investigation of Pb (II) adsorption onto pumice samples: Application of optimization method based on fractional factorial design and response surface methodology. Clean Technologies and Environmental Policy, 16(5), 819–831.

    Article  CAS  Google Scholar 

  • Sruthi, T., Gandhimathi, R., Ramesh, S. T., & Nidheesh, P. V. (2018). Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes. Chemosphere, 210, 38–43.

    Article  CAS  Google Scholar 

  • Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., & Li, M. (2007). Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A, 80(2), 333–341.

    Article  CAS  Google Scholar 

  • Sun, J., Li, X., Feng, J., & Tian, X. (2009). Oxone/Co2+ oxidation as an advanced oxidation process: Comparison with traditional Fenton oxidation for treatment of landfill leachate. Water Research, 43(17), 4363–4369.

    Article  CAS  Google Scholar 

  • Sun, H., Xie, G., He, D., & Zhang, L. (2020). Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling. Applied Catalysis B: Environmental, 267, 118383.

    Article  CAS  Google Scholar 

  • Talinli, I., & Anderson, G. K. (1992). Interference of hydrogen peroxide on the standard COD test. Water Research, 26(1), 107–110.

    Article  CAS  Google Scholar 

  • Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55(16), 4363–4389.

    Article  CAS  Google Scholar 

  • Tejera, J., Miranda, R., Hermosilla, D., Urra, I., Negro, C., & Blanco, Á. (2019). Treatment of a mature landfill leachate: Comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments. Water, 11(9), 1849.

    Article  CAS  Google Scholar 

  • Usman, M., Byrne, J. M., Chaudhary, A., Orsetti, S., Hanna, K., Ruby, C., Kappler, A., & Haderlein, S. B. (2018). Magnetite and green rust: Synthesis, properties, and environmental applications of mixed-valent iron minerals. Chemical Reviews, 118(7), 3251–3304.

    Article  CAS  Google Scholar 

  • Wei, L., Hu, H., Chen, Q., & Tan, J. (2009). Effects of mechanical activation on the HCl leaching behavior of plagioclase, ilmenite and their mixtures. Hydrometallurgy, 99, 39–44.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhou, S., Qin, F., Peng, H., Lai, Y., & Lin, Y. (2010a). Removal of humic substances from landfill leachate by Fenton oxidation and coagulation. Process Safety and Environmental Protection, 88(4), 276–284.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhou, S., Qin, F., Ye, X., & Zheng, K. (2010b). Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM). Journal of Hazardous Materials, 180(1–3), 456–465.

    Article  CAS  Google Scholar 

  • Yilmaz, T., Aygün, A., Berktay, A., & Nas, B. (2010). Removal of COD and colour from young municipal landfill leachate by Fenton process. Environmental Technology, 31(14), 1635–1640.

    Article  CAS  Google Scholar 

  • Yu, M.-D., Xi, B.-D., Zhu, Z.-Q., Zhang, L., Yang, C., Geng, C.-M., & He, X.-S. (2020). Fate and removal of aromatic organic matter upon a combined leachate treatment process. Chemical Engineering Journal, 401, 126157.

    Article  CAS  Google Scholar 

  • Zhang, H., Choi, H. J., & Huang, C. P. (2005). Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 125(1–3), 166–174.

    Article  CAS  Google Scholar 

  • Zhao, T., Ji, X., Guo, X., Jin, W., Dang, A., Li, H., & Li, T. (2016). Preparation and electrochemical property of Fe3O4/MWCNT nanocomposite. Chemical Physics Letters, 653, 202–206.

    Article  CAS  Google Scholar 

  • Zhou, J., Yu, X., Ding, C., Wang, Z., Zhou, Q., Pao, H., & Cai, W. (2011). Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett-Burman design and response surface methodology. Journal of Environmental Sciences, 23(1), 22–30.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the Scientific Research Projects Coordination Unit (BAP), Van Yuzuncu Yil University, Turkey with the project code of FYL-2020-9260.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Salih Taşcı: Conceptualization, writing—original draft, methodology, investigation. Ayse Ozguven: writing—original draft preparation, methodology, visualization, writing—reviewing and editing. Burçin Yıldız: validation, investigation.

Corresponding author

Correspondence to Ayşe Özgüven.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşcı, S., Özgüven, A. & Yıldız, B. Multi-Response/Multi-Step Optimization of Heterogeneous Fenton Process with Fe3O4 Catalyst for the Treatment of Landfill Leachate. Water Air Soil Pollut 232, 275 (2021). https://doi.org/10.1007/s11270-021-05225-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05225-w

Keywords

Navigation