Skip to main content

Advertisement

Log in

Fire in Organic-Rich Wetland Sediments: Inorganic Responses in Porewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Declining rainfall and extraction of groundwater increase the vulnerability of wetland sediments to ignition and combustion. This study investigated the existence of a unique hydrochemical porewater signal associated with organic-rich sulfidic sediments that have been overheated, dried, cracked, and burnt, by the passage of fire. Porewater was collected from wetland sediments with recent fire histories, as well as a wetland that had not suffered any type of burn in recent times (i.e. 5+ years). The results show that fire brought about elevated base cation concentrations in addition to substantial increase in oxidation of sulfidic wetland sediments, the generation of acidic porewaters, and the concomitant mobilisation of metal species. These changes were episodic in nature, varying with seasonal fluctuations of groundwater and sediment hydration and saturation, and persistent for at least several years. The seasonally episodic nature of acid generation following fire leads to the depletion of the acid-neutralising capacity of the sediments (potentially faster than would otherwise have occurred as a result of drought-induced acidification events alone) and ultimately exhausts the buffering capacity of the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mataix-Beneyto, J., & García-Orenes, F. (2008). Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena, 74(3), 219–226. https://doi.org/10.1016/j.catena.2007.12.008.

    Article  Google Scholar 

  • Baldwin, D. S., Hall, K. C., Rees, G. N., & Richardson, A. J. (2007). Development of a protocol for recognizing sulfidic sediments (potential acid sulfate soils) in freshwater wetlands. Ecological Management & Restoration, 8(1), 56–60. https://doi.org/10.1111/j.1442-8903.2007.00333.x.

    Article  Google Scholar 

  • Bixby, R. J., Cooper, S. D., Gresswell, R. E., Brown, L. E., Dahm, C. N., & Dwire, K. A. (2015). Fire effects on aquatic ecosystems: an assessment of the current state of the science. Freshwater Science, 34(4), 1340–1350.

    Article  Google Scholar 

  • Blake, D. (2013) Inorganic hydrogeochemical responses to fires in wetland sediments on the Swan Coastal Plain, Western Australia. PhD Thesis, School of Science, Edith Cowan University, Perth Western Australia.

  • Brown, L. E., Holden, J., Palmer, S. M., Johnston, K., Ramchunder, S. J., & Grayson, R. (2015). Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems. Freshwater Science, 34(4), 1406–1425. https://doi.org/10.1086/683426.

    Article  Google Scholar 

  • Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8.

    Article  Google Scholar 

  • Chu, C., Lin, C., Wu, Y., Lu, W., & Long, J. (2006). Organic matter increases jarosite dissolution in acid sulfate soils under inundation conditions. Australian Journal of Soil Research, 44(3), 11(16).

    Google Scholar 

  • Creasey, C. L., & Flegal, A. R. (1999). Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques. Hydrogeology Journal, 7(2), 161–167. https://doi.org/10.1007/s100400050188.

    Article  Google Scholar 

  • Cruikshanks, R., Lauridsen, R., Hartl, M., Harrison, A., Kelly-Quinn, M., O’Halloran, J., & Giller, P. (2008). Putting the sodium dominance index to the test as a measure of acid sensitivity across diverse geological conditions and with reference to the influence of plantation forests. Water, Air, & Soil Pollution, 190(1), 221–229.

    Article  CAS  Google Scholar 

  • Davidson, W. A. (1995) Hydrogeology and groundwater resources of the Perth region, Western Australia Geological Survey of Western Australia, Bulletin 142.

  • Davis, J. A., & Froend, R. H. (1999). Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions. Wetlands Ecology and Management, 7(1-2), 13–23.

    Article  Google Scholar 

  • Degens, B.P., and Thornton, H. (2018) Effects of Gnangara allocation scenarios on groundwater acidification from exposed acid sulfate soils. Hydrogeological Report Series, Report No HR348. Department of Water and Environmental Regulation, Perth.

  • Doerr, S. H., Blake, W. H., Shakesby, R. A., Stagnitti, F., Vuurens, S. H., Humphreys, G. S., & Wallbrink, P. (2004). Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire, 13, 157–163.

    Article  Google Scholar 

  • Fitzpatrick, R., Raven, M., Self, P., Shand, P., Grealish, G., & Mosley, L. (2014) Irreversible clay mineral transformations from bushfires in acid sulfate soils: an indicator of soil processes involved in climate variability and climate change. In Proceedings 23rd Australian Clay Minerals Society Conference: Perth (pp. 47-50).

  • Flanagan, N. E., Wang, H., Winton, S., & Richardson, C. J. (2020). Low-severity fire as a mechanism of organic matter protection in global peatlands: thermal alteration slows decomposition. Global Change Biology, 26, 3930–3946.

    Article  Google Scholar 

  • García-Corona, R., Benito, E., de Blas, E., & Varela, M. (2004). Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire, 13(2), 195–199. https://doi.org/10.1071/WF03068.

    Article  Google Scholar 

  • Georgakopoulos, A., Filippidis, A., & Kassoli-Fournaraki, A. (2002). Leachability of major and trace elements of fly ash from Ptolemais Power Station, Northern Greece. Energy Sources, 24, 103–113.

    Article  CAS  Google Scholar 

  • Green, R., Macdonald, B. C. T., Melville, M. D., & Waite, T. D. (2006). Hydrochemistry of episodic drainage waters discharged from an acid sulfate soil affected catchment. Journal of Hydrology, 325(1-4), 356–375.

    Article  Google Scholar 

  • Harper, A. R., Doerr, S. H., Santin, C., Froyd, C. A., & Sinnadurai, P. (2018). Prescribed fire and its impacts on ecosystem services in the UK. Science of the Total Environment, 624, 691–703.

    Article  CAS  Google Scholar 

  • Holden, J., Wearing, C., Palmer, S., Jackson, B., Johnston, K., & Brown, L. E. (2014). Fire decreases near-surface hydraulic conductivity and macropore flow in blanket peat. Hydrological Processes, 28(5), 2868–2876. https://doi.org/10.1002/hyp.9875.

    Article  Google Scholar 

  • Horwitz, P., & Sommer, B. (2005). Water quality responses to fire, with particular reference to organic-rich wetlands and the Swan Coastal Plain: a review. Journal of the Royal Society of Western Australia, 88, 121–128.

    Google Scholar 

  • Horwitz, P., Pemberton, M., & Ryder, D. (1999). Catastrophic loss of organic carbon from a management fire in a peatland in south-western Australia. In A. J. McComb & J. A. Davis (Eds.), Wetlands for the Future. Proceedings of INTECOL V (pp. 487–501). Adelaide: Gleneagles Press.

    Google Scholar 

  • Horwitz, P., Sommer, B., & Froend, R. (2009) Wetlands and groundwater-dependent ecosystems. Chapter 4 in: Biodiversity values and threatening processes of the Gnangara Groundwater System. Eds. B. Wilson and L. Valentine. Perth: Department of Environment and Conservation.

  • Johnston, S. G., Bush, R. T., Sullivan, L. A., Burton, E. D., Smith, D., Martens, M. A., Stephens, L. P. (2008) Changes in water quality following tidal inundation of coastal lowland acid sulfate soil landscapes. Estuarine, Coastal and Shelf Science.

  • Kettridge, N., Humphrey, R. E., Smith, J. E., Lukenbach, M. C., Devito, K. J., Petrone, R. M., & Waddington, J. M. (2014). Burned and unburned peat water repellency: Implications for peatland evaporation following wildfire. Journal of Hydrology, 513, 335–341.

    Article  Google Scholar 

  • Khanna, P., Ludwig, B., & Raison, R. (1996). Comparing modelled and observed effects of ash additions on chemistry of a highly acid soil. Soil Research, 34(6), 999–1013. https://doi.org/10.1071/SR9960999.

    Article  CAS  Google Scholar 

  • Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L. A., Reddington, C. L., Arnold, S. R., Knote, C., Khan, M. F., Latif, M. T., Syaufina, L., & Adrianto, H. A. (2020). Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environmental Research Letters, 15, 094054.

    Article  Google Scholar 

  • Kučerová, A., Rektoris, L., Štechová, T., & Bastl, M. (2008). Disturbances on a wooded raised bog—how windthrow, bark beetle and fire affect vegetation and soil water quality? Folia Geobotanica, 43(1), 49–67.

    Article  Google Scholar 

  • Ludwig, B., Khanna, P. K., Raison, R. J., & Jacobsen, K. L. (1998). Modelling cation composition of soil extracts under ashbeds following an intense slashfire in a eucalypt forest. Forest Ecology and Management, 103(1), 9–20. https://doi.org/10.1016/s0378-1127(97)00173-4.

    Article  Google Scholar 

  • Macdonald, B. C. T., White, I., Åström, M. E., Keene, A. F., Melville, M. D., & Reynolds, J. K. (2007). Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia. Applied Geochemistry, 22(12), 2695–2705.

    Article  CAS  Google Scholar 

  • Martin, D. A. (2016). At the nexus of fire, water and society. Philosophical Transactions of the Royal Society, B: Biological Sciences, 371(1696), 20150172.

    Article  Google Scholar 

  • Mataix-Solera, J., & Doerr, S. H. (2004). Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118(1–2), 77–88. https://doi.org/10.1016/s0016-7061(03)00185-x.

    Article  CAS  Google Scholar 

  • McFarlane, D., Stone, R., Martens, S., Thomas, J., Silberstein, R., Ali, R., Hodgson, G. (2012). "Climate change impacts on water yields and demands in south-western Australia." Journal of Hydrology 475, 488–498.

  • Moreno, L., Jiménez, M.-E., Aguilera, H., Jiménez, P., & de la Losa, A. (2010). The 2009 smouldering peat fire in Las Tablas de Daimiel National Park (Spain). Fire Technology, 1–20. https://doi.org/10.1007/s10694-010-0172-y.

  • Neary, D. G., Klopatek, C. C., DeBano, L. F., & Ffolliott, P. F. (1999). Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122(1-2), 51–71. https://doi.org/10.1016/s0378-1127(99)00032-8.

    Article  Google Scholar 

  • Nordstrom, D. K. (1982). Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In J. A. Kittrick, D. S. Fanning, & L. R. Hossner (Eds.), Acid Sulfate Weathering Special Publication 10 (pp. 37–56). Madison: Soil Science Society of America.

    Google Scholar 

  • Ohlemiller, T. J. (1985). Modeling of smoldering combustion propagation. Progress in Energy and Combustion Science, 11, 277–310.

    Article  CAS  Google Scholar 

  • Pahlman, J. E., & Reimers, G. W. (1986) Thermal gravimetric analysis of pyrite oxidation at low temperature: US Department of the Interior, Bureau of Mines.

  • Parkhurst, D.L., & Appelo, C.A.J. (1999) User’s guide to PHREEQC−a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations U.S. Geol. Surv. Water Resour. Invest. Rep.

  • Puls, R. W., & Barcelona, M. J. (1996) Low-flow (minimal drawdown) ground-water sampling procedures: US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response.

  • Rein, G., Cleaver, N., & Torero, P. P. J. L. (2008). The severity of smouldering peat fires and damage to the forest soil. CATENA, 74, 304–309.

    Article  Google Scholar 

  • Rhoades, C. C., Entwistle, D., & Butler, D. (2011). The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, ColoradoA. International Journal of Wildland Fire, 20(3), 430–442. https://doi.org/10.1071/WF09086.

    Article  CAS  Google Scholar 

  • Rust, A. J., Saxe, S., McCray, J., Rhoades, C. C., & Hogue, T. S. (2019). Evaluating the factors responsible for post-fire water quality response in forests of the western USA. International Journal of Wildland Fire, 28(10), 769–784.

    Article  CAS  Google Scholar 

  • Schoonen, M., Elsetinow, A., Borda, M., & Strongin, D. (2000). Effect of temperature and illumination on pyrite oxidation between pH 2 and 6. Geochemical Transactions, 1(4), 23.

    Article  Google Scholar 

  • Searle, J. A., Hammond, M. J., & Bathols, G. (2011) Perth shallow groundwater systems investigation: Lake Nowergup. HG40, Department of Water, Western Australia.

  • Semeniuk, C. A. (1988). Consanguineous wetlands and there distribution in the Darling System, southwestern Australia. Journal of the Royal Society of Western Australia, 70, 69–87.

    Google Scholar 

  • Semeniuk, V., & Semeniuk, C. A. (2005). Wetland sediments and soils on the Swan Coastal Plain, southwestern Australia: types, distribution, susceptibility to combustion, and implications for fire management. Journal of the Royal Society of Western Australia, 88, 91.

    Google Scholar 

  • Smith, H. G., Sheridan, G. J., Lane, P. N., Nyman, P., & Haydon, S. (2011). Wildfire effects on water quality in forest catchments: a review with implications for water supply. Journal of Hydrology, 396(1-2), 170–192.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., Moonen, M., Zwaga, K., Lucassen, E., Lamers, L. P. M., & Roelofs, J. G. M. (2006). Changes in pore water chemistry of desiccating freshwater sediments with different sulfur contents. Geoderma, 132(3-4), 372–383.

    Article  CAS  Google Scholar 

  • Sommer, B., & Horwitz, P. (2001). Water quality and macroinvertebrate response to acidification following intensified summer droughts in a Western Australian wetland. Marine and Freshwater Research, 52(7), 1015–1021.

    Article  CAS  Google Scholar 

  • Sommer, B., Horwitz, P. (2009). Macroinvertebrate cycles of decline and recovery in Swan Coastal Plain (Western Australia) wetlands affected by drought-induced acidification. Hydrobiologia 624(1), 191–203.

  • Sullivan, L. A., & Bush, R. T. (2004). Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia. Marine and Freshwater Research, 55, 727–736.

    Article  CAS  Google Scholar 

  • Turetsky, M. R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11–14.

    Article  CAS  Google Scholar 

  • Water Authority of Western Australia. (1995) Review of proposed changes to environmental conditions: Gnangara Mound groundwater resources (Section 46)/Water Authority of Western Australia. Leederville, W.A.: Water Authority of Western Australia.

Download references

Acknowledgements

The work described here is one component of a larger project examining the occurrence of fire within wetland sediments and its effects on water quality, funded by the Department of Fire and Emergency Services Western Australia (DFES, formerly Fire and Emergency Services Authority of Western Australia), Edith Cowan University Postgraduate Research Scholarship and the Centre for Ecosystem Management, Edith Cowan University. The authors would like to acknowledge the role of Mr. Ralph Smith, Environmental Manager DFES in the establishment of this project. The manuscript was improved by the comments and suggestions of an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Contributions

Dave Blake: conceptualisation; investigation; methodology; data curation; formal analysis; writing—original draft, review and editing; funding acquisition. Mary Boyce: investigation; methodology; supervision; writing—review and editing. William Stock: investigation; supervision; writing—review and editing. Pierre Horwitz: conceptualization; investigation; writing-original draft, review and editing; resources; funding acquisition; supervision

Corresponding author

Correspondence to David Blake.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blake, D., Boyce, M.C., Stock, W.D. et al. Fire in Organic-Rich Wetland Sediments: Inorganic Responses in Porewater. Water Air Soil Pollut 232, 101 (2021). https://doi.org/10.1007/s11270-021-05013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05013-6

Keywords

Navigation