Skip to main content
Log in

A Reusable Biosorbent Using Ca-Alginate Immobilized Providencia vermicola for Pd(II) Recovery from Acidic Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study aimed to develop Ca-alginate immobilized Providencia vermicola as a reusable biosorbent to recover palladium ions from acidic solutions. To examine the adsorption characteristics and availability of Ca-alginate immobilized P. vermicola for Pd(II) recovery, several experiments such as SEM-EDX, FT-IR, isotherm, kinetics, fixed-bed columns, desorption, and reusability were conducted. The results of SEM-EDX and FT-IR analyses demonstrated that amino and carboxyl groups were the main contributors in the Pd(II) biosorption process and that hydroxyl and phosphate groups were also critical for Pd(II) adsorption. The adsorption isotherms could be well described by the Langmuir model, and the maximum adsorption capacity was 197.23 mg g−1. Kinetic experiments suggested that the biosorbent reached adsorption equilibrium within 60 min. After adsorption, the Pd(II) bound to the Ca-alginate immobilized P. vermicola was easily desorbed with 0.1 M HCl. A regeneration test of this Ca-alginate immobilized P. vermicola biosorbent revealed that it could be used for at least five cycles with high adsorption capacity. These results indicated that Ca-alginate immobilized P. vermicola has the extraordinary potential to adsorb metal ions from industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Halim, E. S., & Al-Deyab, S. S. (2011). Removal of heavy metals from their aqueous solutions through adsorption onto natural polymers. Carbohydrate Polymers, 84, 454–458.

    Article  CAS  Google Scholar 

  • Ahmad, A., Bhat, A. H., & Buang, A. (2018). Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. Journal of Cleaner Production, 171, 1361–1375.

    Article  CAS  Google Scholar 

  • Al-Rub, F. A. A., El-Naas, M. H., Ashour, I., & Al-Marzouqi, M. (2006). Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochemistry, 41, 457–464.

    Article  CAS  Google Scholar 

  • And, J. O., & Steill, J. D. (2008). Free carboxylate stretching modes. Journal of Physical Chemistry A, 112, 3281–3283.

    Article  Google Scholar 

  • Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F., & Trouvé, G. (2011). Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: Kinetic, equilibrium and thermodynamic studies. Desalination, 271, 80–87.

    Article  CAS  Google Scholar 

  • Blanco, A., Sanz, B., Llama, M. J., & Serra, J. L. (1999). Biosorption of heavy metals to immobilised Phormidium laminosum biomass., 69, 227–240.

  • Cho, C. W., Kang, S. B., Kim, S., Yun, Y. S., & Won, S. W. (2016). Reusable polyethylenimine-coated polysulfone/bacterial biomass composite fiber biosorbent for recovery of Pd(II) from acidic solutions. Chemical Engineering Journal, 302, 545–551.

    Article  CAS  Google Scholar 

  • Choi, H. A., Park, H. N., & Won, S. W. (2017). A reusable adsorbent polyethylenimine/polyvinyl chloride crosslinked fiber for Pd(II) recovery from acidic solutions. Journal of Environmental Management, 204, 200.

    Article  CAS  Google Scholar 

  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645.

    Article  CAS  Google Scholar 

  • Gandhi, M. R., Yamada, M., Kondo, Y., Shibayama, A., & Hamada, F. (2015). p-Sulfonatothiacalix[6]arene-impregnated resins for the sorption of platinum group metals and effective separation of palladium from automotive catalyst residue. Journal of Industrial & Engineering Chemistry, 30, 20–28.

    Article  Google Scholar 

  • Gao, X., Yan, Z., & Zhao, Y. (2017). Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate. Carbohydrate Polymers, 159, 108–115.

    Article  CAS  Google Scholar 

  • Jeon, C. (2015). Adsorption behavior of silver ions from industrial wastewater onto immobilized crab shell beads. Journal of Industrial & Engineering Chemistry, 32, 195–200.

    Article  CAS  Google Scholar 

  • Kim, S., Song, M.-H., Wei, W., & Yun, Y.-S. (2015). Selective biosorption behavior of Escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. Journal of Hazardous Materials, 283, 657–662.

    Article  CAS  Google Scholar 

  • Lakouraj, M. M., Hasanzadeh, F., & Zare, E. N. (2014a). Nanogel and super-paramagnetic nanocomposite of thiacalix 4 arene functionalized chitosan: Synthesis, characterization and heavy metal sorption. Iranian Polymer Journal, 23, 933–945.

    Article  CAS  Google Scholar 

  • Lakouraj, M. M., Mojerlou, F., & Zare, E. N. (2014b). Nanogel and superparamagnetic nanocomposite based on sodium alginate for sorption of heavy metal ions. Carbohydrate Polymers, 106, 34–41.

    Article  CAS  Google Scholar 

  • Li, X., Qi, Y., Li, Y., Zhang, Y., He, X., & Wang, Y. (2013). Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems. Bioresource Technology, 142, 611–619.

    Article  CAS  Google Scholar 

  • Liu, Y., Gan, L., Chen, Z., Megharaj, M., & Naidu, R. (2012). Removal of nitrate using Paracoccus sp YF1 immobilized on bamboo carbon. Journal of Hazardous Materials, 229, 419–425.

    Article  Google Scholar 

  • Lu, K., Chai, K., Liang, Q., Xu, Z., Li, G., & Ji, H. (2017). Biosorption and selective separation of acetophenone and 1-phenylethanol with polysaccharide-based polymers. Chemical Engineering Journal, 317, 862–872.

    Article  CAS  Google Scholar 

  • Maes, S., Props, R., Fitts, J. P., Smet, R. D., Vilchezvargas, R., Vital, M., Pieper, D. H., Vanhaecke, F., Boon, N., & Hennebel, T. (2016). Platinum recovery from synthetic extreme environments by halophilic bacteria. Environmental Science & Technology, 50, 2619.

    Article  CAS  Google Scholar 

  • Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals, 15, 377–390.

    Article  CAS  Google Scholar 

  • Manasi, Rajesh, V., & Rajesh, N. (2014). Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between a microbe immobilized polysaccharide matrix and lead. Chemical Engineering Journal, 248, 342–351.

    Article  CAS  Google Scholar 

  • Morisada, S., Kim, Y. H., Ogata, T., Marutani, Y., & Nakano, Y. (2011). Improved adsorption behaviors of amine-modified tannin gel for palladium and platinum ions in acidic chloride solutions. Industrial and Engineering Chemistry Research, 50, 1875–1880.

    Article  CAS  Google Scholar 

  • Mudasir, M., Karelius, K., Aprilita, N. H., & Wahyuni, E. T. (2016). Adsorption of mecury(II) on dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 4, 1839–1849.

    Article  CAS  Google Scholar 

  • Park, J., Won, S. W., Mao, J., Kwak, I. S., & Yun, Y.-S. (2010a). Recovery of Pd(II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. Journal of Hazardous Materials, 181, 794–800.

    Article  CAS  Google Scholar 

  • Park, J., Won, S. W., Mao, J., Kwak, I. S., & Yun, Y. S. (2010b). Recovery of Pd(II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. Journal of Hazardous Materials, 181, 794–800.

    Article  CAS  Google Scholar 

  • Prakasham, R. S., Merrie, S., Sheela, R., Saswathi, N., & Ramakrishna, S. V. (1999). Biosorption of chromium VI by free and immobilized Rhizopus arrhizus., 104, 421–427.

  • Reddy, D. H. K., & Lee, S. M. (2013). Three-dimensional porous spinel ferrite as an adsorbent for Pb(II) removal from aqueous solutions. Industrial & Engineering Chemistry Research, 52, 15789–15800.

    Article  CAS  Google Scholar 

  • Reddy, D. H. K., & Lee, S. M. (2014). Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids & Surfaces A Physicochemical & Engineering Aspects, 454, 96–103.

    Article  Google Scholar 

  • Turanov, A. N., Karandashev, V. К., Artyushin, O. I., Sharova, E. V., & Genkina, G. K. (2017). Adsorption of palladium(II) from hydrochloric acid solutions using polymeric resins impregnated with novel N-substituted 2-(diphenylthiophosphoryl)acetamides. Separation & Purification Technology, 187, 355–364.

  • Tuzen, M., Uluozlu, O. D., Usta, C., & Soylak, M. (2007). Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin. Analytica Chimica Acta, 581, 241–246.

    Article  CAS  Google Scholar 

  • Wan, N. W., Hanafiah, M. A., & Yong, S. S. (2008). Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: Kinetics and isotherm studies. Colloids & Surfaces B Biointerfaces, 65, 18–24.

    Article  Google Scholar 

  • Wang, D., Xu, Y., Yang, L., Wang, F., Asiri, A. M., & Alamry, K. A. (2018). Synthesis of aluminum pyrophosphate for efficient sorption of U(VI). Journal of Molecular Liquids, 258, 327–334.

    Article  CAS  Google Scholar 

  • Won, S. W., Mao, J., Kwak, I. S., Sathishkumar, M., & Yun, Y. S. (2010). Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresource Technology, 101, 1135–1140.

    Article  CAS  Google Scholar 

  • Won, S. W., Lim, A., & Yun, Y. S. (2013). Recovery of high-purity metallic Pd from Pd(II)-sorbed biosorbents by incineration. Bioresource Technology, 137, 400–403.

    Article  CAS  Google Scholar 

  • Xu, H., Tan, L., Cui, H., Xu, M., Xiao, Y., Wu, H., Dong, H., Liu, X., Qiu, G., & Xie, J. (2018). Characterization of Pd(II) biosorption in aqueous solution by Shewanella oneidensis MR-1. Journal of Molecular Liquids, 255, 333–340.

    Article  CAS  Google Scholar 

  • Yan, C., & Viraraghavan, T. (2008). Mechanism of biosorption of heavy metals by Mucor rouxii. Engineering in Life Sciences, 8, 363–371.

    Article  CAS  Google Scholar 

  • Yan, G., & Viraraghavan, T. (2010). Mechanism of biosorption of heavy metals by Mucor rouxii. Engineering in Life Sciences, 8, 363–371.

    Article  Google Scholar 

  • Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V., & Krishnaiah, A. (2014). Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids and Surfaces B-Biointerfaces, 114, 75–81.

    Article  CAS  Google Scholar 

  • Zhao, X., Wang, Y., Ye, Z., Borthwick, A. G. L., & Ni, J. (2006). Oil field wastewater treatment in biological aerated filter by immobilized microorganisms. Process Biochemistry, 41, 1475–1483.

    Article  CAS  Google Scholar 

  • Zheng, C., Zhou, J., Jing, W., Qu, B., Jing, W., Hong, L., & Zhao, H. (2009). Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam. Journal of Hazardous Materials, 168, 298–303.

    Article  CAS  Google Scholar 

  • Zhu, T., Huang, W., Zhang, L., Gao, J., & Zhang, W. (2017). Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with Orange II in binary system. International Journal of Biological Macromolecules, 103, 605–612.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (nos. 51871250, 51504106), from the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals Project (SKL-SPM-201809), from the Fundamental Research Funds for the Central Universities of Central South University (no. 502211852), from State Key Laboratory of Applied Microbiology Southern China (no. SKYAM005-2016), and from the Yunnan Science and Technology Plan Project of China (nos. 2015FB204, 2016BA006, 2017FA030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Feng, N., Wang, R. et al. A Reusable Biosorbent Using Ca-Alginate Immobilized Providencia vermicola for Pd(II) Recovery from Acidic Solution. Water Air Soil Pollut 231, 36 (2020). https://doi.org/10.1007/s11270-020-4399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-4399-z

Keywords

Navigation