Skip to main content
Log in

Evaluation of Different Amendment Combinations Associated with Trifolium repens to Stabilize Pb and As in a Mine-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Assisted phytoremediation using amendments is a cost-effective and environmentally friendly approach to control soil pollution. However, amendment type, combination and application rate can influence process effectiveness. In the present study, the effect of the association of red mud and carbon-based amendments on the physicochemical properties of a former mine soil as well as the growth and metal(loid) uptake of Trifolium repens was investigated. For this purpose, a mesocosm experiment was set up using a former mine technosol highly contaminated by As and Pb, amended with red mud combined with different carbon-based amendments, i.e., bamboo biochar, oak biochar, steam activated carbon and acidic activated carbon, and sown with Trifolium repens. The final goal was to determine which amendment combination allows soil metal(loid) immobilization and an efficient plant growth. Results showed that all the four different treatments improved soil characteristics by increasing pH and electrical conductivity and reducing redox potential. All the treatments were also effective in reducing soil pore water lead concentrations. Among the four treatments, the addition of red mud and acidic activated carbon in the soil showed better results regarding Trifolium repens growth. Finally, when grown on the soil amended with red mud and acidic activated carbon, Trifolium repens presented mainly a metal(loid) storage in roots, making it a right candidate for the establishment of a vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam, M., Hussain, Z., Khan, A., Khan, M. A., Rab, A., Asif, M., Shah, M. A., & Muhammad, A. (2020). The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Scientia Horticulturae, 262, 109067.

    CAS  Google Scholar 

  • Alpaslan, B., & Yukselen, M. A. (2002). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil Pollution, 133, 253–263.

    CAS  Google Scholar 

  • Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., & Dugan, B. (2014). Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS One, 9(9), e108340. https://doi.org/10.1371/journal.pone.0108340.

    Article  CAS  Google Scholar 

  • Bart, S., Motelica-Heino, M., Miard, F., Joussein, E., Soubrand, M., Bourgerie, S., & Morabito, D. (2016). Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena, 136, 44–52.

    Google Scholar 

  • Bidar, G., Garçon, G., Pruvot, C., Dewaele, D., Cazier, F., Douay, F., & Shirali, P. (2007). Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Environmental Pollution, 147, 546–553.

    CAS  Google Scholar 

  • Bidar, G., Pruvot, C., Garçon, G., Verdin, A., Shirali, P., & Douay, F. (2009). Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environmental Science and Pollution Research, 16, 42–53.

    CAS  Google Scholar 

  • Bohrerova, Z., Stralkova, R., Podesvova, J., Bohrer, G., & Pokorny, E. (2004). The relationship between redox potential and nitrification under different sequences of crop rotations. Soil and Tillage Research, 77, 25–33.

    Google Scholar 

  • Castaldi, P., Melis, P., Silvetti, M., Deiana, P., & Garau, G. (2009). Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 151, 241–248.

    CAS  Google Scholar 

  • Clapp, E. C. (2007). Organic wastes in soils: Biogeochemical and environmental aspects. Soil Biology and Biochemistry, 39, 1239–1243.

    CAS  Google Scholar 

  • Curtis, M. J., & Claassen, V. P. (2009). Regenerating topsoil functionality in four drastically disturbed soil types by compost incorporation. Restoration Ecology, 17, 24–32.

    Google Scholar 

  • Dunifon, S. N., Evanylo, G. K., Maguire, R. O., & Goatley, J. M. (2011). Soil nutrient and fescue (Festuca spp.) responses to compost and hydroseed on a disturbed roadside. Compost Science & Utilization, 19, 147–151.

    Google Scholar 

  • Erakhrumen, A. A. (2007). Phytoremediation: An environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research Review, 2, 151–156.

    Google Scholar 

  • Forjàn, R., Asensio, V., Rodrìguez-Vila, A., & Covelo, E. F. (2016). Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena, 137, 120–125.

    Google Scholar 

  • Fresno, T., Moreno-Jimenez, E., Zornoza, P., & Peñalosa, J. M. (2018). Aided phytostabilisation of As- and Cu-contaminated soils using white lupin and combined iron and organic amendments. Journal of Environmental Management, 205, 142–150.

    CAS  Google Scholar 

  • Gautam, M., Pandey, D., & Agrawal, M. (2017). Phytoremediation of metals using lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes. International Journal of Phytoremediation, 19(6), 555–562.

    CAS  Google Scholar 

  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, 142, 530–539.

    CAS  Google Scholar 

  • Hafsteinsdóttir, E. G., Camenzuli, D., Rocavert, A. L., Walworth, J., & Gore, D. B. (2015). Chemical immobilization of metals and metalloids by phosphates. Applied Geochemistry, 59, 47–62.

    Google Scholar 

  • Hagemann, N., Spokas, K., Schmidt, H. P., Kägi, R., Bholer, M. A., & Bucheli, T. D. (2018). Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs. Water, 10, 182. https://doi.org/10.3390/w10020182.

    Article  CAS  Google Scholar 

  • Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157, 2654–2662.

    CAS  Google Scholar 

  • Hattab, N., Soubrand, M., Guégan, R., Motelica-Heino, M., Bourrat, X., Faure, O., & Bouchardon, J. L. (2014). Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: Role of the humic substances. Environmental Science and Pollution Research, 21, 10470–10480.

    CAS  Google Scholar 

  • Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant and Soil, 248, 43–59.

    CAS  Google Scholar 

  • Hua, Y., Heal, K. V., & Friesl-Hanl, W. (2017). The use of red mud as an immobiliser for metal/metalloid-contaminated soil: a review. Journal of Hazardous Materials, 325, 17–30.

    CAS  Google Scholar 

  • Hurel, C., Taneez, M., Volpi, Ghirardini, A., & Libralato, G. (2017). Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events. Environmental Pollution, 220, 364–374.

    CAS  Google Scholar 

  • Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362, 389–417.

    CAS  Google Scholar 

  • Lebrun, M., Miard, F., Nandillon, R., Hattab-Hambli, N., Scippa, G. S., Bourgerie, S., & Morabito, D. (2018a). Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. Journal of Soils and Sediments, 18, 2188–2202.

    CAS  Google Scholar 

  • Lebrun, M., Miard, F., Nandillon, R., Léger, J. C., Hattab-Hambli, N., Scippa, G. S., Bourgerie, S., & Morabito, D. (2018b). Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: early stage evaluation of biochar feedstock and particle size effects on as and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere, 194, 316–326.

    CAS  Google Scholar 

  • Lebrun, M., Miard, F., Renouard, S., Nandillon, R., Scippa, G. S., Morabito, D., & Bourgerie, S. (2018c). Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests. Environmental Science and Pollution Research, 25(33), 33678–33690.

    CAS  Google Scholar 

  • Lebrun, M., De Zio, E., Miard, F., Scippa, G. S., Renzone, G., Scaloni, A., Bourgerie, S., Morabito, D., & Trupiano, D. (2019). Amending an As/Pb contaminated soil with biochar, compost and iron grit: effect on Salix viminalis growth, root proteome profiles and metal(loid) accumulation indexes. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125397.

  • Lebrun, M., Miard, F., Scippa, G. S., Hano, C., Morabito, D., & Bourgerie, S. (2020a). Effect of biochar and red mud amendment combinations on Salix triandra growth, metal(loid) accumulation and oxidative stress response. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2020.110466.

  • Lebrun, M., Van Poucke, R., Miard, F., Scippa, G. S., Bourgerie, S., Morabito, D., & Tack, F. M. (2020b). Effects of carbon‐based materials and redmuds on metal (loid) immobilization and growth of Salix dasyclados Wimm. on a former mine technosol contaminated by arsenic and lead. Land Degradation & Development. https://doi.org/10.1002/ldr.3726

  • Lee, S. H., Ji, W., Lee, W. S., Koo, N., Koh, I. H., Kim, M. S., & Park, J. S. (2014). Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. Journal of Environmental Management, 139, 15–21.

    CAS  Google Scholar 

  • Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere, 178, 466–478.

    CAS  Google Scholar 

  • Liu, Z. T., Zhang, G. Y., & Hu, Z. S. (2012). Immobilization of cadmium and lead in contaminated soils by different amendments. Advanced Materials and Processes, 415, 1662–1666.

    Google Scholar 

  • Liu, Z., Dugan, B., Masiello, C., Barnes, R., Gallagher, M., & Gonnermann, H. (2016). Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. Journal of Hydrology, 533, 461–472.

    CAS  Google Scholar 

  • Lomaglio, T., Hattab-Hambli, N., Bret, A., Miard, F., Trupiano, D., Scippa, G. S., Motelica-Heino, M., Bourgerie, S., & Morabito, D. (2017). Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol. Journal of Geochemical Exploration, 182, 138–148.

    CAS  Google Scholar 

  • Lombi, E., Hamon, R. E., McGrath, S. P., & McLaughlin, M. J. (2003). Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science & Technology, 37, 979–984.

    CAS  Google Scholar 

  • Lopareva-Pohu, A., Verdin, A., Garçon, G., Sahraoui, A. L., Pourrut, B., Debiane, D., Waterlot, C., Laruelle, F., Bidar, G., Douay, F., & Shirali, P. (2011). Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Environmental Pollution, 159, 1721–1729.

    CAS  Google Scholar 

  • Marks, E., Alcaniz, J., & Domene, X. (2014). Unintended effects of biochars on short term plant growth in a calcareous soil. Plant and Soil, 385(1–2), 87–105.

    CAS  Google Scholar 

  • Mohd-Aizat, A., Mohamad-Roslan, M. K., Sulaiman, W. N. A., & Karam, D. S. (2014). The relationship between soil pH and selected soil properties in 48 years logged-over forest. International Journal of Environmental Sciences, 4(6), 1129–1140.

    CAS  Google Scholar 

  • Molnàr, M., Vaszita, E., Farkas, E., Ujaczki, E., Fekete-Kertész, I., Tolner, H., Kleberez, O., Kirchkeszner, C., Gruiz, K., Uzinger, N., & Feigl, V. (2016). Acidic sandy soil improvement with biochar – a microcosm study. The Science of the Total Environment, 563–564, 855–865.

    Google Scholar 

  • Nandillon, R., Lahwegue, O., Miard, F., Lebrun, M., Gaillard, M., Sabatier, S., Battaglia-Brunet, F., Morabito, D., & Bourgerie, S. (2019a). Potential use of biochar, compost and iron grit associated with Trifolium repens to stabilize Pb and As on a multi-contaminated technosol. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2019.109432.

  • Nandillon, R., Lebrun, M., Miard, F., Gaillard, M., Sabatier, S., Morabito, D., & Bourgerie, S. (2019b). Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulphate. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00447-8.

  • Nawab, J., Khan, S., Aamir, M., Shamshad, I., Qamar, Z., Din, I., & Huang, Q. (2016). Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environmental Science and Pollution Research, 23, 2381–2390.

    CAS  Google Scholar 

  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science. https://doi.org/10.1155/2019/5794869.

  • Oustriere, N., Marchand, L., Rosette, G., Friesl-Hanl, W., & Mench, M. (2017). Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil. Environmental Science and Pollution Research, 24, 7468–7481.

    CAS  Google Scholar 

  • Pallarés, J., González-Cencerrado, A., & Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, 115, 64–73.

    Google Scholar 

  • Peng, J.-F., Song, Y.-H., Yuan, P., Cui, X.-Y., & Qiu, G.-L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633–640.

    CAS  Google Scholar 

  • Qasim, B., Motelica-Heino, M., Joussein, E., Soubrand, M., & Gauthier, A. (2015). Potentially toxic element phytoavailability assessment in Technosols from former smelting and mining areas. Environmental Science and Pollution Research, 22, 5961–5974.

    CAS  Google Scholar 

  • Qian, K. Z., Kumar, A., Zhang, H. L., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064.

    CAS  Google Scholar 

  • R Development Core Team. (2017). R: a language and environment for statistical computing. Vienne: R foundation for statistical Computing.

    Google Scholar 

  • Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-García, M. A., & Moreno-Castilla, C. (2001). Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology, 76(12), 1209–1215.

    CAS  Google Scholar 

  • Sabir, M., Hanafi, M. M., Aziz, T., Ahmad, H. R., Zia-Ur-Rehman, M., Saifullah, G. M., & Hakeem, K. R. (2013). Comparative effect of activated carbon, pressmud and poultry manure on immobilization and concentration of metals in maize (Zea mays) grown on contaminated soil. International Journal of Agriculture and Biology, 15, 559–564.

    CAS  Google Scholar 

  • Santona, L., Castaldi, P., & Melis, P. (2006). Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials, 136, 324–329.

    CAS  Google Scholar 

  • Sarfraz, R., Li, S., Yang, W., Zhou, B., & Xing, S. (2019). Assessment of physicochemical and nutritional characteristics of waste mushroom substrate biochar under various pyrolysis temperatures and times. Sustainability, 11, 277. https://doi.org/10.3390/su11010277.

    Article  CAS  Google Scholar 

  • Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment. Biological Forum-An International Journal, 2, 112–121.

    Google Scholar 

  • Sun, L., Li, L., Chen, Z., Wang, J., & Xiong, Z. (2014). Combined effects of nitrogen deposition and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest soils. Soil Science & Plant Nutrition, 60, 254–265.

    CAS  Google Scholar 

  • Sun, W., Zhang, S., & Su, C. (2018). Impact of biochar on the bioremediation and phytoremediation of heavy metal(loid)s in soil (Chapter 9, advances in bioremediation and phytoremediation ed.pp. 149–168). Rijeka: InTech.

    Google Scholar 

  • Sun, Q., Ding, S., Zhang, L., Chen, X., Liu, Q., Chen, M., & Wang, Y. (2019). Effect of phosphorus competition on arsenic bioavailability in dry and flooded soils: comparative study using diffusive gradients in thin films and chemical extraction methods. Journal of Soils and Sediments, 19, 1830–1838.

    CAS  Google Scholar 

  • Takarina, N. D., & Pin, T. G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, 21, 77–81.

    Google Scholar 

  • Talukder, A. H., Mahmud, S., Shaon, S. M., Tanvir, R. Z., Saha, M. K., Imran, A. A., & Islam, M. S. (2015). Arsenic detoxification by phytoremediation. International Journal of Basic & Clinical Pharmacology, 4(5), 822–846.

    Google Scholar 

  • Taneez, M., Hurel, C., & Marmier, N. (2015). Ex-situ evaluation of bauxite residues as amendment for trace elements stabilization in dredged sediment from Mediterranean Sea: a case study. Marine Pollution Bulletin, 98, 229–234.

    CAS  Google Scholar 

  • Tang, Z., Zhang, L., Huang, Q., Yang, Y., Nie, Z., Yang, J., Wang, Y., & Chai, M. (2015). Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China. Ecotoxicology and Environmental Safety, 122, 343–351.

    Google Scholar 

  • Turpault, M. P., Gobran, G. R., & Bonnaud, P. (2007). Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma, 137, 490–496.

    CAS  Google Scholar 

  • Usman, A. R. A., Alkredaa, R. S., & Al-Wabel, M. I. (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia sp. marina as potential metal bioaccumulator. Ecotoxicology and Environmental Safety, 97, 263–270.

    CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765–794.

    CAS  Google Scholar 

  • Weber, J. S., Goyne, K. W., Luxton, T. P., & Thompson, A. L. (2015). Phosphate treatment of lead-contaminated soil: Effects on water quality, plant uptake, and lead speciation. Journal of Environmental Quality, 44, 1127–1136.

    CAS  Google Scholar 

  • Wu, B., Cheng, G., Jiao, K., Shi, W., Wang, C., & Xu, H. (2016). Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil. Science of the Total Environment, 562, 732–739.

    CAS  Google Scholar 

  • Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Xiong, W., Song, B., Wu, S., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of cocomposting with contaminated wetland soil. Resources, Conservation & Recycling, 140, 278–285.

    Google Scholar 

  • Yoon, J., Xinde, C., Qixing, Z., & Ma, L. Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2-3), 456–464.

    CAS  Google Scholar 

  • Zeng, G., Wan, J., Huang, D., Hu, L., Huang, C., Cheng, M., Xue, W., Gong, X., Wang, R., & Danni Jiang, D. (2017). Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils-a review. Journal of Hazardous Materials, 339, 354–367.

    CAS  Google Scholar 

  • Zheng, C., Wang, X., Liu, J., Ji, X., & Huang, B. (2019). Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L. Environmental Science and Pollution Research, 26, 36688–36697.

    CAS  Google Scholar 

  • Zhou, R., Liu, X., Luo, L., Zhou, Y., Wei, J., Chen, A., Tang, L., Wu, H., Deng, Y., Zhang, F., & Wang, Y. (2017). Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. International Biodeterioration & Biodegradation, 118, 73–81.

    CAS  Google Scholar 

  • Zubair, M., Shakir, M., Ali, Q., Rani, N., Fatima, N., Farooq, S., Shafiq, S., Kanwal, N., Ali, F., & Nasir, I. A. (2016). Rhizobacteria and phytoremediation of heavy metals. Environmental Technology Reviews, 5, 112–119.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank La Carbonerie, Jacobi Carbons, and Alteo Environment for providing the amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Morabito.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Assisted phytoremediation of a soil polluted by As and Pb was investigated.

• Combining red mud and biochar or activated carbon improved soil characteristics.

• Acidic activated carbon use improved soil Pb stabilization but not As immobilization.

• Red mud-acidic activated carbon association improved plant growth.

Trifolium repens was a successful phytostabilizer for an As- and Pb-contaminated soil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simiele, M., Lebrun, M., Del Cioppo, G. et al. Evaluation of Different Amendment Combinations Associated with Trifolium repens to Stabilize Pb and As in a Mine-Contaminated Soil. Water Air Soil Pollut 231, 539 (2020). https://doi.org/10.1007/s11270-020-04908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04908-0

Keywords

Navigation