Skip to main content

Advertisement

Log in

Degradation of a Sunset Yellow and Tartrazine Dye Mixture: Optimization Using Statistical Design and Empirical Mathematical Modeling

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The food industry is considered to be one of the greatest sources of environmental contamination produced by dyes. Moreover, a large number of commercial food dyes and their by-products have been shown to be toxic, having chronic effects on human health. The search for efficient processes with which to treat these compounds is, therefore, necessary. In this work, the photo-peroxidation and photo-Fenton processes using UV-C and sunlight radiations were evaluated in order to degrade two synthetic dyes commonly found in food industry wastewater, sunset yellow and tartrazine, in an aqueous mixture. The preliminary results showed that the photo-Fenton/UV-C system was the most efficient. The ANOVA analysis results indicated a good fit of the model. The higher degradations were obtained using 50 mg L−1 of [H2O2], 1 mg L−1 of [Fe], a pH of 3.5, and a lower surface area/volume ratio (0.02 cm2 mL−1). In the kinetic study, a good fit was found for the kinetic model proposed by Chan and Chu. Degradations higher than 99% and 78% were obtained for the chromophore and aromatic groups, respectively, in 180 min. Toxicity tests showed that post-treatment samples did not interfere in the development of Lactuca sativa seeds and Escherichia coli and Salmonella enteritidis bacteria strains. The photo-Fenton/UV-C system can, therefore, be considered an efficient treatment for the degradation of the mixture of sunset yellow and tartrazine dyes under the conditions evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida, E. J. R., Andrade, A. R., & Corso, C. R. (2019). Evaluation of the acid blue 161 dye degradation through electrochemical oxidation combined with microbiological systems. International journal of Environmental Science and Technology, 16, 8185–8196. https://doi.org/10.1007/s13762-019-02377-5.

    Article  CAS  Google Scholar 

  • Banaschik, R., Jablonowskia, H., Bednarskic, P. J., & Kolb, J. F. (2018). Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water. Journal of Hazardous Materials, 342, 651–660. https://doi.org/10.1016/j.jhazmat.2017.08.058.

    Article  CAS  Google Scholar 

  • Basu, A., & Kumar, G. S. (2015). Interaction of toxic azo dyes with heme protein: biophysical insights into the binding aspect of the food additive amaranth with human hemoglobin. Journal of Hazardous Materials, 289, 204–209. https://doi.org/10.1016/j.jhazmat.2015.02.044.

    Article  CAS  Google Scholar 

  • Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. F. R. (2014). Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13, 377–399. https://doi.org/10.1111/1541-4337.12065.

    Article  Google Scholar 

  • Cetinkaya, S. G., Morcali, M. H., Akarsu, S., Ziba, C. A., & Dolaz, M. (2018). Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research, 28, 165–170. https://doi.org/10.1016/j.serj.2018.02.001.

    Article  CAS  Google Scholar 

  • Chan, K. H., & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51, 305–311. https://doi.org/10.1016/S0045-6535(02)00812-3.

    Article  CAS  Google Scholar 

  • Charamba, L. V. C., da Rocha Santana, R. M., do Nascimento, G. E., Charamba, B. V. C., de Moura, M. C., Coelho, L. C. B. B., de Oliveira, J. G. C., Duarte, M. M. M. B., Napoleão, D. C., & (2018). Application of the advanced oxidative process on the degradation of the green leaf and purple açaí food dyes with kinetic monitoring and artificial neural network modelling. Water Science and Technology, 78(5), 1094–1103.

  • Chekira, N., Tassalit, D., Benhabiles, O., Merzouk, N. K., Ghenna, M., Abdessemed, A., & Issaadi, R. (2017). A comparative study of tartrazine degradation using UV and solar fixed bed reactors. International Journal of Hydrogen Energy, 42, 8948–8954. https://doi.org/10.1016/j.ijhydene.2016.11.057.

    Article  CAS  Google Scholar 

  • Chung, K. T. (2016). Azo dyes and human health: a review. Journal of Environmental Science and Health, Part C, 34, 233–261. https://doi.org/10.1080/10590501.2016.1236602.

    Article  CAS  Google Scholar 

  • Elbanna, K., Sarhan, O. M., Khider, M., Elmogy, M., Abulreesh, H. H., & Shaaban, M. R. (2017). Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. Journal of Food and Drug Analysis, 25, 667–680. https://doi.org/10.1016/j.jfda.2017.01.005.

    Article  CAS  Google Scholar 

  • Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. Journal of Environmental Management, 231, 241–248. https://doi.org/10.1016/j.jenvman.2018.10.017.

    Article  CAS  Google Scholar 

  • Ghoneim, M. M., El-Desoky, H. S., & Zidan, N. M. (2011). Electro-Fenton oxidation of sunset yellow FCF azo-dye in aqueous solutions. Desalination, 274, 22–30. https://doi.org/10.1016/j.desal.2011.01.062.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Jain, R., Nayak, A., Agarwal, S., & Shrivastava, M. (2011). Removal of the hazardous dye - tartrazine by photodegradation on titanium dioxide surface. Materials Science and Engineering C, 31, 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.

    Article  CAS  Google Scholar 

  • Khayyat, L., Essawy, A., Sorour, J., & Soffar, A. (2017). Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. Journal of Life and Environmental Sciences, 5, e3041. https://doi.org/10.7717/peerj.3041.

    Article  CAS  Google Scholar 

  • Lipskikh, O. I., Korotkova, E. I., Khristunova, Y. E. P., Barek, J., & Kratochvil, B. (2018). Sensors for voltammetric determination of food azo dyes - a critical review. Electrochimica Acta, 260, 974–985. https://doi.org/10.1016/j.electacta.2017.12.027.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2008). Design and analysis of experiments. EUA: Wiley.

    Google Scholar 

  • Nagel-Hassemer, M. E., Carvalho-Pinto, C. R. S., Matias, W. G., & Lapolli, F. R. (2011). Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation. Environmental Technology, 32, 1867–1874. https://doi.org/10.1080/09593330.2011.566893.

    Article  CAS  Google Scholar 

  • Nair, A. T., Makwana, A. R., & Ahammed, M. M. (2014). The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Science and Technology, 69, 464–478. https://doi.org/10.2166/wst.2013.733.

    Article  CAS  Google Scholar 

  • Nascimento, G. E., Napoleão, D. C., Silva, P. K. A., Santana, R. M. R., Bastos, A. M. R., Zaidan, L. E. M. C., Moura, M. C., Coelho, L. C. B. B., & Duarte, M. M. M. B. (2018a). Photo-assisted degradation, toxicological assessment, and modeling using artificial neural networks of reactive gray BF-2R dye. Water, Air, & Soil Pollution, 229, 1–15. https://doi.org/10.1007/s11270-018-4028-2.

    Article  CAS  Google Scholar 

  • Nascimento, G. E., Napoleão, D. C., Santana, R. M. R., Charamba, L. V. C., Oliveira, J. G. C., Moura, M. C., Coelho, L. C. B. B., & Duarte, M. M. M. B. (2018b). Degradation of textile dyes remazol yellow gold and reactive turquoise: optimization, toxicity and modeling by artificial neural networks. Water Science and Technology, 2017, 812–823. https://doi.org/10.2166/wst.2018.251.

    Article  CAS  Google Scholar 

  • Oancea, P., & Meltzer, V. (2013). Photo-Fenton process for the degradation of tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 44, 990–994. https://doi.org/10.1016/j.jtice.2013.03.014.

    Article  CAS  Google Scholar 

  • Okafor, S. N., Obonga, W., Ezeokonkwo, M. A., Nurudeen, J., Orovwigho, U., & Ahiabuike, J. (2016). Assessment of the health implications of synthetic and natural food colourants - a critical review. UK Journal of Pharmaceutical and Biosciences, 4, 1–11. https://doi.org/10.20510/ukjpb/4/i4/110639.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Science of the Total Environment, 409, 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.

    Article  CAS  Google Scholar 

  • Palas, B., Ersöz, G., & Atalay, S. (2017). Photo Fenton-like oxidation of tartrazine under visible and UV light irradiation in the presence of LaCuO3 perovskite catalyst. Process Safety and Environmental Protection, 111, 270–282. https://doi.org/10.1016/j.psep.2017.07.022.

    Article  CAS  Google Scholar 

  • Peláez-Cid, A.-A., Herrera-González, A.-M., Salazar-Villanueva, M., & Bautista-Hernández, A. (2016). Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. Journal of Environmental Management, 181, 269–278. https://doi.org/10.1016/j.jenvman.2016.06.026.

    Article  CAS  Google Scholar 

  • Rajamanickam, D., & Shanthi, M. (2014). Photocatalytic degradation of an azo dye sunset yellow under UV-A light using TiO2/CAC composite catalysts. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 128, 100–108. https://doi.org/10.1016/j.saa.2014.02.126.

    Article  CAS  Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45, 4311–4340. https://doi.org/10.1016/j.watres.2011.05.035.

    Article  CAS  Google Scholar 

  • Rovina, K., Prabakaran, P. P., Siddiquee, S., & Shaarani, S. M. (2016). Methods for the analysis of sunset yellow FCF (E110) in food and beverage products- a review. Trends in Analytical Chemistry, 85, 47–56. https://doi.org/10.1016/j.trac.2016.05.009.

    Article  CAS  Google Scholar 

  • Santana, R. M. R., Nascimento, G. E., Silva, P. K. A., Lucena, A. L. A., Procópio, T. F., Napoleão, T. H., Duarte, M. M. M. B., & Napoleão, D. C. (2018). Kinetic and ecotoxicological evaluation of the direct orange 26 dye degradation by Fenton and solar photo-Fenton processes. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 22, 1–20. https://doi.org/10.5902/2236117032254.

    Article  Google Scholar 

  • Santiago, D. E., González-Díaz, O., Araña, J., Melián, E. P., Pérez-Peña, J., & Doña-Rodríguez, J. M. (2018). Factorial experimental design of imazalil-containing wastewater to be treated by Fenton-based processes. Journal of Photochemistry and Photobiology A: Chemistry, 353, 240–250. https://doi.org/10.1016/j.jphotochem.2017.11.038.

    Article  CAS  Google Scholar 

  • Santos, M. M. M., Duarte, M. M. M. B., Nascimento, G. E., Souza, N. B. G., & Rocha, O. R. S. (2018). Use of TiO2 photocatalyst supported on residues of polystyrene packaging and its applicability on the removal of food dyes. Environmental Technology, 12, 1–14. https://doi.org/10.1080/09593330.2017.1423396.

    Article  CAS  Google Scholar 

  • Shojaeimehr, T., Rahimpour, F., Khadivi, M. A., & Sadeghi, M. (2014). A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA). Journal of Industrial and Engineering Chemistry, 20, 870–880. https://doi.org/10.1016/j.jiec.2013.06.017.

    Article  CAS  Google Scholar 

  • Soares, B. M., Araujo, T. M., Ramos, J. A., Pinto, L. C., Khayat, B. M., De Oliveira Bahia, M., & Khayat, A. S. (2015). Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow. Anticancer Research, 35, 1465–1474.

    CAS  Google Scholar 

  • Tikhomirova, T. I., Ramazanova, G. R., & Apyari, V. V. (2018). Effect of nature and structure of synthetic anionic food dyes on their sorption onto different sorbents: peculiarities and prospects. Microchemical Journal, 143, 305–311. https://doi.org/10.1016/j.microc.2018.08.022.

    Article  CAS  Google Scholar 

  • Vedrenne, M., Vasquez-Medrano, R., Prato-Garcia, D., Frontana-Uribe, B. A., Hernandez-Esparza, M., & Andrés, J. M. (2012). A ferrous oxalate mediated photo-Fenton system: toward an increased biodegradability of indigo dyed wastewaters. Journal of Hazardous Materials, 243, 292–301. https://doi.org/10.1016/j.jhazmat.2012.10.032.

    Article  CAS  Google Scholar 

  • Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42, 251–325. https://doi.org/10.1080/10643389.2010.507698.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, Z., Xiao, Y., & Li, N. (2014). Spectrophotometric determination of sunset yellow in beverage after preconcentration by the cloud point extraction method. Analytical Methods, 6, 8901–8905. https://doi.org/10.1039/C4AY01537A.

    Article  CAS  Google Scholar 

  • Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety, 76, 182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019.

    Article  CAS  Google Scholar 

  • Zaidan, L. E. M. C., Rodriguez-Díaz, J. M., Napoleão, D. C., Montenegro, M. C. B. S. M., Araújo, A. N., Benachour, M., & Silva, V. L. (2017). Heterogeneous photocatalytic degradation of phenol and derivatives by (BiPO4/H2O2/UV and TiO2/H2O2/UV) and the evaluation of plant seed toxicity tests. Korean Journal of Chemical Engineering, 34, 511–522. https://doi.org/10.1007/s11814-016-0293-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the following Brazilian fostering agencies and institutions: Fundação de Amparo a Ciência e Tecnologia de Pernambuco (FACEPE), Fundação de Apoio ao Desenvolvimento da Universidade Federal de Pernambuco (FADE/UFPE), Núcleo de Química Analítica Avançada do Estado de Pernambuco (NUQAAPE/FACEPE), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Laboratory of Protein Biochemistry of UFPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. do Nascimento.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, G.E., Cavalcanti, V.O.M., Santana, R.M.R. et al. Degradation of a Sunset Yellow and Tartrazine Dye Mixture: Optimization Using Statistical Design and Empirical Mathematical Modeling. Water Air Soil Pollut 231, 254 (2020). https://doi.org/10.1007/s11270-020-04547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04547-5

Keywords

Navigation