Skip to main content
Log in

Comparison of the Central Composite Rotatable Design with Doehlert Matrix on the Optimization of the Synthetic Dairy Effluent Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The objective of this work was to optimize the synthetic dairy effluent (SDE) treatment using the central composite rotatable design (CCRD) and the Doehlert matrix to evaluate the adjustment of the models to the data, besides verifying if it is possible to find the same optimum point to the turbidity removal, chemical oxygen demand (COD), and UV254 compounds using two experimental designs. The coagulation and flocculation assays were made in jar test and the flotation in a flotatest in bench scale. For each experimental design, the effect of two organic coagulants was evaluated in the removal of turbidity, COD, and UV254 compounds of the SDE: the polyacrylamide (PAM) and the Tanfloc. The generated mathematical models in both experimental designs adjusted well to the data, showing a high capacity of prediction. To the PAM coagulant, the optimal point found in the CCRD design was 46.49 mg L−1 of coagulant in a pH of 6.53; in the Doehlert design, the optimal point in the CCRD was 48.40 mg L−1 of coagulant in a pH of 6.50. When Tanfloc was used, in the CCRD, the optimal point found was 40.42 mg L−1 of coagulant in a pH of 5.00 and, in Doehlert design, the optimum found was 37.57 mg L−1 in a pH of 5.05. It is concluded that, using a smaller number of runs, through Doehlert design is possible to find the optimal point really close to the obtained through CCRD in which are observed efficiencies of similar pollutant removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M., & Whitcomb, P. (2007). DOE simplified: practical tools for effective experimentation (2nd ed.). New York: Productive Press.

    Google Scholar 

  • APHA, AWWA, & WEF. (2017). Standard methods for the examination of water and wastewater (23nd ed.). Washinegton: American Public Health Association, AmericanWaterWorks Association, Water Environment Federation.

  • Barros Neto, B., Scarminio, I. S., & Bruns, R. E. (2007). Como fazer experimentos (3nd ed.). Campinas: Editora Unicamp.

    Google Scholar 

  • Bashir, M. J. K., Aziz, H. A., Aziz, S. Q., & Amr, S. A. (2012). An overview of wastewater treatment processes optimization using response surface metheodology (RSM). In: The 4th International Engieneering Conference-Towards Engineering of 21st century. 4. 2012, Malaysia, 1-11.

  • Beltrán-Heredia, J., Sánchez-Martín, J., & Rodríguez-Sánchez, M. T. (2011). Textile wastewater purification through natural coagulants. Applied Water Science, 1(1–2), 25–33.

    Article  CAS  Google Scholar 

  • Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977.

    Article  CAS  Google Scholar 

  • Brião, V. B., Tavares, C. R. G., Favaretto, D. P. C., & Hemkemeier, M. (2015). Ultrafiltração de efluente modelo e efluente industrial de laticínios. Rev. CIATEC-UPF, 7(1), 1–12.

    Article  Google Scholar 

  • Calado, V., & Montgomery, D. C. (2003). Planejamento de experimentos usando o Statistica. Rio de Janeiro: E-Papers.

  • Doehlert, D. H. (1970). Uniform shell designs. Applied Statistics, 19(3), 231–239.

    Article  Google Scholar 

  • Ferreira, S. L. C., Santos, W. N. L., Quintella, C. M., Neto, B. B., & Bosque-Sendra, J. M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry – review. Talanta, 63, 1061–1067.

    Article  CAS  Google Scholar 

  • Grizotto, R. K., Bruns, R. E., Aguierre, J. M., & Batista, G. (2005). Otimização via metodologia de superfície de resposta dos parâmetros tecnológicos para produção de fruta estruturada e desidratada a partir de polpa concentrada de mamão. Ciência e Tecnologia de Alimentos, 25(1), 158–164.

    Article  Google Scholar 

  • Hammami, S., Ouejhani, A., Bellakhal, N., & Dachraoui, M. (2009). Application of Doehlert matrix to determine the optimal conditions of electrochemical treatment of tannery effluents. Journal of Hazardous Materials, 163, 251–258.

    Article  CAS  Google Scholar 

  • Healy, M. G., Rodgers, M., & Mulqueen, J. (2007). Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters. Journal of Environmental Management, 83, 409–415.

    Article  CAS  Google Scholar 

  • Kakoi, B., Kaluli, J. W., Ndiba, P., & Thion’g, G. (2017). Optimization of Maerua decumbent bio-coagulant in paint industry wastewater treatment with response surface methodology. Journal of Cleaner Production., 164, 1124–1134.

    Article  CAS  Google Scholar 

  • Ma, J., Fu, K., Jiang, L., Ding, L., Guan, Q., Zhang, S., Zhang, H., Shi, J., & Fu, X. (2017). Flocculation performance of cationic polyacrylamide with high cationic degree in humic acid synthetic water treatment and effect of kaolin particles. Separation and Purification Technology, 181, 201–212.

    Article  CAS  Google Scholar 

  • Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical design and analysis of experiments: with applications to engineering and science (2nd ed.). New Jersey: John Wiley & Sons Inc.

    Book  Google Scholar 

  • Montgomery, D. C. (2010). Design and analysis of experiments (7nd ed.). New Delhi: Wiley India Pvt. Ltd.

    Google Scholar 

  • Nair, A. T., Makwana, A. R., & Ahammed, M. M. (2014). The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Science & Technology, 69(3), 464–478.

    Article  CAS  Google Scholar 

  • Najib, T., Solgi, M., Farazmand, A., Heydarian, S. M., & Nasernejad, B. (2017). Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal is sulfidogenic UASB reactor. Journal of Environmental Chemical Engineering, 5(4), 3256–3265.

    Article  CAS  Google Scholar 

  • Oladoja, N. A. (2015). Headway on natural polymeric coagulants in water and wastewater treatment operations. Journal of Water Process Engineering, 6, 174–192.

    Article  Google Scholar 

  • Olmez, T. (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials, 162(2–3), 1371–1378.

    Article  CAS  Google Scholar 

  • Ouejhani, A., Hellal, F., Dachraoui, M., Lallevé, G., & Fauvarque, J. F. (2008). Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths. Journal of Hazardous Materials, 157, 423–431.

    Article  CAS  Google Scholar 

  • Pereira, E. L., Borges, A. C., Heleno, F. F., Costa, T. H. H. C., & Mounteer, A. H. (2017). Factors influencing anaerobic biodegradation of biodiesel industry wastewater. Water Air Soil Pollution, 228, 213–228.

    Article  CAS  Google Scholar 

  • Pereira, M. S., Borges, A. C., Heleno, F. F., Squillace, L. F. A., & Faroni, L. R. D. (2018). Treatment of synthetic milk industry wastewater using batch dissolved air flotation. Journal of Cleaner Production, 189, 729–737.

    Article  CAS  Google Scholar 

  • Semren, T. Z., Karaconji, I. B., Safner, T., Brajenovic, N., Lovakovic, B. T., & Pizent, A. (2018). Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: optimization of the HS-SPME procedure and sample storage conditions. Talanta, 176, 537–543.

    Article  CAS  Google Scholar 

  • Teófilo, R. F., & Ferreira, M. C. (2006). Quimiometria II: Planilhas eletrônicas para cálculos de planejamentos experimentais. um tutorial. Química Nova, 29(2), 338–350.

    Article  Google Scholar 

  • Tyagi, M., Rana, A., Kumari, S., & Jagadevan, S. (2018). Adsorptive removal of cyanide from coke oven wastewater onto zero-valent iron: optimization through response surface methodology, isotherm and kinetic studies. Journal of Cleaner Production, 178, 398–407.

    Article  CAS  Google Scholar 

  • Van Gyseghem, E., Jimidar, M., Sneyers, R., Redlich, D., Verhoeven, E., Massart, D. L., & Vander Heyden., Y. (2004). Selection of reversed-phase liquid chromatographic columns with diverse selectivity towards the potential separation of impurities in drugs. Journal of Chromatography A, 1042 (1–2), 69–80.

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the following Brazilian Agencies: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Lopes Muniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz, G.L., Borges, A.C., Souza, D.V. et al. Comparison of the Central Composite Rotatable Design with Doehlert Matrix on the Optimization of the Synthetic Dairy Effluent Treatment. Water Air Soil Pollut 229, 306 (2018). https://doi.org/10.1007/s11270-018-3965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3965-0

Keywords

Navigation