Skip to main content

Advertisement

Log in

Simultaneous Pollutant Removal and Electricity Generation in a Combined ABR-MFC-MEC System Treating Fecal Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Simultaneous power generation and fecal wastewater treatment were investigated using a combined ABR-MFC-MEC system (anaerobic baffled reactor-microbial fuel cell-microbial electrolysis cell). The installation of multi-stage baffles can benefit retaining the suspended solids in the system and help separate the hydrolysis-acidification and the methanogen processes. The efficiencies of the nitrification-denitrification process were improved because of the weak current generation by coupling the microbial electrochemical device (MFC-MEC) with the ABR unit. Maximum removal rates for chemical oxygen demand (COD) and ammonia nitrogen (NH4 +-N) were 1.35 ± 0.05 kg COD/m3/day and 85.0 ± 0.4 g NH4 +-N/m3/day, respectively, while 45% of methane (CH4), 9% of carbon dioxide (CO2), and 45% of nitrogen gas (N2) contents in volume ratio were found in the collected gas phase. An average surplus output voltage of 452.5 ± 10.5 mV could be achieved from the combined system, when the initial COD concentration was 1500.0 ± 20.0 mg/L and the initial NH4 +-N concentration was 110.0 ± 5.0 mg/L, while the effluent COD could reach 50.0 mg/L with an HRT of 48 h. The combined process has the potential to treat fecal wastewater efficiently with nearly zero energy input and a fair bio-fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association (APHA), A.W.W.A.A., Water Environment Federation (WEFW). (1998). Standard Methods for the Examination of Water and Wastewater. 20th ed, Washington, DC.

  • Anand, C. K., & Apul, D. S. (2014). Composting toilets as a sustainable alternative to urban sanitation--a review. Waste Management, 34(2), 329–343.

    Article  Google Scholar 

  • Biache, C., Frometa, A. E., Czechowski, F., Lu, Y., & Philp, R. P. (2015). Thiosteranes in samples impacted by fecal materials and their potential use as marker of sewage input. Environmental Pollution, 196, 268–275.

    Article  CAS  Google Scholar 

  • Chang, I. S., Moon, H., Jang, J. K., & Kim, B. H. (2005). Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosensors & Bioelectronics, 20(9), 1856–1859.

    Article  CAS  Google Scholar 

  • Cheng, S., Kiely, P., & Logan, B. E. (2011). Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresource Technology, 102(1), 367–371.

    Article  CAS  Google Scholar 

  • Cheng, S., & Logan, B. E. (2011). High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technology, 102(3), 3571–3574.

    Article  CAS  Google Scholar 

  • Diak, J., Ormeci, B., & Kennedy, K. J. (2013). Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. Bioprocess and Biosystems Engineering, 36(4), 417–424.

    Article  CAS  Google Scholar 

  • Escapa, A., Gomez, X., Tartakovsky, B., & Moran, A. (2012). Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: Case study. International Journal of Hydrogen Energy, 37(24), 18641–18653.

    Article  CAS  Google Scholar 

  • Feng, Y., Lee, H., Wang, X., Liu, Y., & He, W. (2010). Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell. Bioresource Technology, 101(2), 632–638.

    Article  CAS  Google Scholar 

  • Glorina P.Orozco, M.T.Z. 2012. Biophysico-chemical and socioeconomic study of two Major Manila Esteros. Biology Education for Social and Sustainab, 161–171.

  • Hengjing Yan, J. M. R. (2013). Enhanced nitrogen removal in single-chamber MFC with incraesed gas diffusion areas. Biotechnology and Bioengineering, 110(3), 785–790.

    Article  Google Scholar 

  • Hill, G. B., & Baldwin, S. A. (2012). Vermicomposting toilets, an alternative to latrine style microbial composting toilets, prove far superior in mass reduction, pathogen destruction, compost quality, and operational cost. Waste Management, 32(10), 1811–1820.

    Article  CAS  Google Scholar 

  • Jia, Y. H., Choi, J. Y., Ryu, J. H., Kim, C. H., Lee, W. K., Tran, H. T., Zhang, R. H., & Ahn, D. H. (2010). Hydrogen production from wastewater using a microbial electrolysis cell. Korean Journal of Chemical Engineering, 27(6), 1854–1859.

    Article  CAS  Google Scholar 

  • Kiely, P. D., Cusick, R., Call, D. F., Selembo, P. A., Regan, J. M., & Logan, B. E. (2011). Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology, 102(1), 388–394.

    Article  CAS  Google Scholar 

  • Kim, I. S., Hwang, M. H., Jang, N. J., Hyun, S. H., & Lee, S. T. (2004). Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. International Journal of Hydrogen Energy, 29(11), 1133–1140.

    CAS  Google Scholar 

  • Kuntke, P., Smiech, K. M., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T. H., Hamelers, H. V., & Buisman, C. J. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), 2627–2636.

    Article  CAS  Google Scholar 

  • Lalander, C. H., Hill, G. B., & Vinneras, B. (2013). Hygienic quality of faeces treated in urine diverting vermicomposting toilets. Waste Management, 33(11), 2204–2210.

    Article  CAS  Google Scholar 

  • Li, J., Liu, G., Zhang, R., Luo, Y., Zhang, C., & Li, M. (2010). Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresource Technology, 101(11), 4013–4020.

    Article  CAS  Google Scholar 

  • Liu, Z. D., & Li, H. R. (2007). Effects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal, 36(3), 209–214.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14(12), 512–518.

    Article  CAS  Google Scholar 

  • Min, B., Roman, O. B., & Angelidaki, I. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnology Letters, 30(7), 1213–1218.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Mohanakrishna, G., Srikanth, S., & Sarma, P. N. (2008). Harnessing of bioelectricity in microbial fuel cell (MFC) employing aerated cathode through anaerobic treatment of chemical wastewater using selectively enriched hydrogen producing mixed consortia. Fuel, 87(12), 2667–2676.

    Article  CAS  Google Scholar 

  • Oarga Mulec, A., Mihelič, R., Walochnik, J., & Griessler Bulc, T. (2016). Composting of the solid fraction of blackwater from a separation system with vacuum toilets – Effects on the process and quality. Journal of Cleaner Production, 112, 4683–4690.

    Article  CAS  Google Scholar 

  • Pirsaheb, M., Rostamifar, M., Mansouri, A. M., Zinatizadeh, A. A. L., & Sharafi, K. (2015). Performance of an anaerobic baffled reactor (ABR) treating high strength baker's yeast manufacturing wastewater. Journal of the Taiwan Institute of Chemical Engineers, 47, 137–148.

    Article  CAS  Google Scholar 

  • Quitzau, M.-B. (2007). Water-flushing toilets: Systemic development and path-dependent characteristics and their bearing on technological alternatives. Technology in Society, 29(3), 351–360.

    Article  Google Scholar 

  • Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G., & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11), 3999–4004.

    Article  CAS  Google Scholar 

  • Sakdaronnarong, C. K., Thanosawan, S., Chaithong, S., Sinbuathong, N., & Jeraputra, C. (2013). Electricity production from ethanol stillage in two-compartment MFC. Fuel, 107, 382–386.

    Article  CAS  Google Scholar 

  • Shaoan Cheng, P. K., & Logan, B. E. (2011). Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs. Bioresource Technology, 102.

  • Sharma, V., & Kundu, P. P. (2010). Biocatalysts in microbial fuel cells. Enzyme and Microbial Technology, 47(5), 179–188.

    Article  CAS  Google Scholar 

  • Skjelhaugen, O. J. (1999). Closed system for local reuse of blackwater and food waste, integrated with agriculture. Water Science and Technology, 39(5), 161–168.

    Article  Google Scholar 

  • Sudarsan, J. S., Prasana, K., Nithiyanantham, S., & Renganathan, K. (2014). Comparative study of electricity production and treatment of different wastewater using microbial fuel cell (MFC). Environmental Earth Sciences, 73(5), 2409–2413.

    Article  Google Scholar 

  • Tao, Q., Luo, J., Zhou, J., Zhou, S., Liu, G., & Zhang, R. (2014). Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology, 164, 402–407.

    Article  CAS  Google Scholar 

  • Uddin, S. M. N., Muhandiki, V. S., Sakai, A., Al Mamun, A., & Hridi, S. M. (2014). Socio-cultural acceptance of appropriate technology: Identifying and prioritizing barriers for widespread use of the urine diversion toilets in rural Muslim communities of Bangladesh. Technology in Society, 38, 32–39.

    Article  Google Scholar 

  • Wang, X., Cai, Z., Zhou, Q., Zhang, Z., & Chen, C. (2012). Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnology and Bioengineering, 109(2), 426–433.

    Article  CAS  Google Scholar 

  • Wu, T., Zhu, G., Jha, A. K., Zou, R., Liu, L., Huang, X., & Liu, C. (2013). Hydrogen production with effluent from an anaerobic baffled reactor (ABR) using a single-chamber microbial electrolysis cell (MEC). International Journal of Hydrogen Energy, 38(25), 11117–11123.

    Article  CAS  Google Scholar 

  • Xuan, Z., Chang, N.-B., & Wanielista, M. (2011). Modeling the system dynamics for nutrient removal in an innovative septic tank media filter. Bioprocess and Biosystems Engineering, 35(4), 545–552.

    Article  Google Scholar 

  • Yang Li, H.-Y. Y., Shen, J.-Y., Yang, M., & Han-Qing, Y. (2012). Enhancement of azo dye decolourization in a MFC–MEC coupled system. Bioresource Technology, 202.

  • Yatmo, Y. A., & Atmodiwirjo, P. (2012). Communal toilet as a collective spatial system in high density urban Kampung. Procedia - Social and Behavioral Sciences, 36, 677–687.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially co-supported by the RTTC-China 2014 project and the Natural Science Foundation of China (No. 21206092).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Liu or Suyun Xu.

Electronic supplementary material

Fig. S1

Schematic diagram of the experimental set-up(double-chamber MEC), where1, ABR reactor with four cells;2, MFC cathode;3, MFC anode, PEM was sated between NO.2 and NO.3; 4, MEC anode;5, MEC cathode, PEM was sated between NO.4 and NO.5; electrodes are set in the center of the cells and diode is used to control the direction of current. (JPEG 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Leng, F., Guan, Y. et al. Simultaneous Pollutant Removal and Electricity Generation in a Combined ABR-MFC-MEC System Treating Fecal Wastewater. Water Air Soil Pollut 228, 179 (2017). https://doi.org/10.1007/s11270-017-3342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3342-4

Keywords

Navigation