Skip to main content

Advertisement

Log in

Comparative Adsorption of Zn2+ from Aqueous Solution Using Hydroxylated and Sulphonated Biochars Derived from Pulp and Paper Sludge

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Thermally robust hydroxylated biochar (HBC) and sulphonated biochar (SBC) were synthesised from paper and pulp sludge (PPS) and used for the adsorption of Zn2+ from synthetic wastewater through batch experiments. FTIR analyses proved successful incorporation of the hydroxyl and sulphonic functional groups in HBC and SBC, respectively. The effects of initial solution pH, initial Zn2+ concentration, solution temperature and equilibrium contact time were investigated. The removal efficiency of Zn2+ increased with increase in both solution temperature and initial Zn2+ concentration. Adsorption of Zn2+ was greatest at pH 3. HBC and SBC removed 38–99% and 68–90% of Zn2+ from solution, respectively. Zn2+ adsorption on SBC followed both Langmuir (R 2 = 0.994) and Freundlich isotherm models (R 2 = 0.999), while adsorption on HBC followed the Freundlich model (R 2 = 0.989). Zn2+ adsorption on both biosorbents followed pseudo-second-order kinetics (R 2 = 0.994–0.999). The increase in enthalpy of adsorption indicated the adsorption process was endothermic and a decrease in Gibbs free energy signified the spontaneity of adsorption. Positive entropy change values imply that the adsorbed Zn2+ ions are randomly distributed over the adsorbent surface. The research demonstrated that although their adsorption mechanisms had salient differences, HBC and SBC can effectively remove Zn2+ from wastewater. Development of HBC and SBC from PPS provides potential low-cost biosorbents for water and wastewater, while simultaneously minimising the environmental and public health risks associated with current disposal practices of PPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  • Abdel-Ghani, N. T., & El-Chaghaby, G. A. (2014). Biosorption for metal ions removal from aqueous solutions: a review of recent studies. International Journal of Latest Research in Science and Technology, 3, 24–42.

    Google Scholar 

  • Agrawal, A., Sahu, K. K., & Pandey, B. D. (2004). A comparative adsorption study of copper on various industrial solid wastes. AIChE Journal, 50, 2430–2438.

    Article  CAS  Google Scholar 

  • Ahmad, M., Ok, Y. S., Kim, B., Ahn, J., Lee, Y. H., Zhang, M., Moon, D. H., Al-Wabel, M. I., & Lee, S. S. (2016). Impact of soybean Stover- and pine needle-derived biochars on Pb and as mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 166, 131–139.

    Article  CAS  Google Scholar 

  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2015). Comparative studies on the olive stone activated carbon adsorption of Zn2+, Ni2+, and Cd2+ from synthetic wastewater. Desalination and Water Treatment, 54, 166–177.

    Article  CAS  Google Scholar 

  • Aly, Z., & Luca, V. (2013). Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. Journal of Radioanalytical and Nuclear Chemistry, 295, 889–900.

    Article  CAS  Google Scholar 

  • Bhatt, A. S., Sakaria, P. L., Vasudevan, M., Pawar, R. R., Sudheesh, N., Bajaj, H. C., & Mody, H. M. (2012). Adsorption of an anionic dye from aqueous medium by organoclays: equilibrium modeling, kinetic and thermodynamic exploration. RSC Advances, 2, 8663–8671.

    Article  CAS  Google Scholar 

  • Bhattacharya, A. K., Naiya, T. K., Mandal, S. N., & Das, S. K. (2008). Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chemical Engineering Journal, 137, 529–541.

    CAS  Google Scholar 

  • Bunhu, T., Lilian Tichagwa, L., & Chaukura, N. (2016). Competitive sorption of Cd2+ and Pb2+ from a binary aqueous solution by poly (methyl methacrylate)-grafted montmorillonite clay nanocomposite. Applied Water Science. doi:10.1007/s13201-016-0404-5.

    Google Scholar 

  • Chaukura, N., Gwenzi, W., Tavengwa, N., & Manyuchi, M. M. (2016a). Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. Environmental Development, 19, 84–89.

    Article  Google Scholar 

  • Chaukura N., Murimba E.C., Gwenzi W. (2016b). Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Applied Water Science 1–12. Doi: 10.1007/s13201-016-0392-5.

  • Desta, M. B. (2013). Batch sorption experiments: langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics. doi:10.1155/2013/375830.

    Google Scholar 

  • El-Said, A. G., Badawy, N. A., Abdel-Aal, A. Y., & Garamon, S. E. (2011). Optimization parameters for adsorption and desorption of Zn (II) and Se (IV) using rice husk ash: kinetics and equilibrium. Ionics, 17, 263–270.

    Article  CAS  Google Scholar 

  • Forján, R., Asensio, V., Rodríguez-Vila, A., & Covelo, E. F. (2016). Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena, 137, 120–125.

    Article  Google Scholar 

  • Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 13–28.

    Article  CAS  Google Scholar 

  • Gong, R., Ye, J., Dai, W., Yan, X., Hu, J., Hu, X., Li, S., & Huang, H. (2013). Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Industrial & Engineering Chemistry Research, 52, 14297–14303.

    Article  CAS  Google Scholar 

  • Gwenzi, W., Musarurwa, T., Nyamugafata, P., Chaukura, N., Chaparadza, A., & Mbera, S. (2014). Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbants derived from sawdust and water hyacinth (Eichhornia crassipes). Water Science and Technology, 70, 1419–1427.

    Article  CAS  Google Scholar 

  • Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S., & Nyamasoka, B. (2015). Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. Journal of Environmental Management, 150, 250–261.

    Article  CAS  Google Scholar 

  • Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere, 145, 336–341.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.

    Article  CAS  Google Scholar 

  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56.

    Article  CAS  Google Scholar 

  • Jiang, S., Huang, L., Nguyen, T. A. H., Ok, Y. S., Rudolph, V., Yang, H., & Zhang, D. (2016). Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere, 142, 64–71.

    Article  CAS  Google Scholar 

  • Jin, H., Hanif, M. U., Capareda, S., Chang, Z., Huang, H., & Ai, Y. (2016). Copper (II) removal potential from aqueous solution by pyrolysis biochar derived from anaerobically digested algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical Engineering, 4, 365–372.

    Article  CAS  Google Scholar 

  • Kakavandi, B., Jafari, A. J., Kalantary, R. R., Nasseri, S., Ameri, A., & Esrafily, A. (2013). Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian Journal of Environmental Health Sciences & Engineering, 10, 19–28.

    Article  Google Scholar 

  • Kilic, M., Kirbiyik, C., Cepeliogullar, O., & Putun, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Applied Surface Science, 283, 856–862.

    Article  CAS  Google Scholar 

  • Méndez, A., Barriga, S., Fidalgo, J. M., & Gascó, G. (2009). Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water. Journal of Hazardous Materials, 15, 736–743.

    Article  Google Scholar 

  • Mohan, D., Singh, P., Sarswat, A., Steele, P. H., & Pittman, C. U., Jr. (2015). Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science, 448, 238–250.

    Article  CAS  Google Scholar 

  • Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., & Parikh, S. J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of Agricultural and Food Chemistry, 61, 2196–2204.

    Article  CAS  Google Scholar 

  • Park, D., Yun, Y., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 86–102.

    Article  CAS  Google Scholar 

  • Park, J., Ok, Y. S., Kim, S., Cho, J., Heo, J., Delaune, R. D., & Seo, D. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83.

    Article  CAS  Google Scholar 

  • Rahimi, S., Moattari, M., Rajabi, L., Derakhshan, A. A., & Keyhani, M. (2015). Iron oxide/hydroxide (a, c-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. Journal of Industrial and Engineering Chemistry, 23, 33–43.

    Article  CAS  Google Scholar 

  • Ruziwa, D. T., Chaukura, N., Gwenzi, W., & Pumure, I. (2015). Removal of Zn2+ and Pb2+ ions from aqueous solution using sulphonated waste polystyrene. Journal of Environmental Chemical Engineering, 3, 2528–2537.

    Article  CAS  Google Scholar 

  • Setyono, D., & Valiyaveettil, S. (2016). Functionalized paper—a readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. Journal of Hazardous Materials, 302, 120–128.

    Article  CAS  Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85.

    Article  CAS  Google Scholar 

  • Trakal, L., Veselská, V., Šafarík, I., Vítková, M., Cíhalová, S., & Komárek, M. (2016). Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresource Technology, 203, 318–324.

    Article  CAS  Google Scholar 

  • Vilakati, G. D., Mishra, A. K., Mishra, S. B., Mamba, B. B., & Thwala, J. M. (2012). Metal ion adsorption behavior of lignocellulosic fiber–ethylene vinyl acetate composites. Polymer Engineering & Science, 52, 760–767.

    Article  CAS  Google Scholar 

  • Wang, F., Tan, L., Liu, Q., Li, R., Li, Z., Zhang, H., Hu, S., Liu, L., & Wang, J. (2015). Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini. Journal of Environmental Radioactivity, 150, 93–98.

    Article  CAS  Google Scholar 

  • Weng, C., & Huang, C. P. (2004). Adsorption characteristics of Zn (II) from dilute aqueous solution by fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247, 137–143.

    Article  CAS  Google Scholar 

  • Xie, S., Yang, J., Chen, C., Zhang, X., Wang, Q., & Zhang, C. (2008). Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. Journal of Environmental Radioactivity, 99, 126–133.

    Article  CAS  Google Scholar 

  • Yasemin, B., & Zeki, T. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences, 19, 160–166.

    Article  Google Scholar 

  • Yu, L., & Luo, Y. (2014). The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. Journal of Environmental Chemical Engineering, 2, 220–229.

    Article  CAS  Google Scholar 

  • Yu, J., Wang, L., Chi, R., Zhang, Y., Xu, Z., & Guo, J. (2013). Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 268, 163–170.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457–462.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhamo Chaukura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaukura, N., Gwenzi, W., Mupatsi, N. et al. Comparative Adsorption of Zn2+ from Aqueous Solution Using Hydroxylated and Sulphonated Biochars Derived from Pulp and Paper Sludge. Water Air Soil Pollut 228, 7 (2017). https://doi.org/10.1007/s11270-016-3191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3191-6

Keywords

Navigation