Skip to main content
Log in

Degradation of Hexachlorocyclohexanes (HCHs) by Stable Zero Valent Iron (ZVI) Microparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

During the production of lindane (γ-HCH) large volumes of wastes containing α-, β-, and δ-HCH isomers were generated. Hexachlorocyclohexanes (HCHs) are carcinogens and teratogen compounds. Although their production and use are currently banned in most countries, many landfills and sites remain polluted by these compounds. This paper studies a promising and novel alternative for the HCH abatement: dechlorination by zero valent iron microparticles. Synthetic wastewater (0.5 mg/L of α-, β-, γ-, and δ-HCH or 6 mg/L of γ-HCH) and five types of commercial iron microparticles (here named mFe-1, mFe-2, mFe-3, mFe-4, and mFe-5) were used in batch (5 g/L) and continuous (W mFe/Q L  = 167 g · h/L) operation mode at room temperature. Iron microparticles were characterized (before and after reaction) by N2 adsorption/desorption isotherms and X-ray diffraction. HCH isomers showed different behavior vs. dechlorination (γ > α > δ > β) according to the axial/equatorial position of the chlorines. The most active iron source among those tested was mFe-1, presenting small particle diameter (70 μm), moderate BET area (35 m2/kg), low oxygen content, and traces of manganese. mFe-1 exhibited high activity and stability both in continuous (X γ-HCH = 70%, W mFe/Q L  = 167 g · h/L) and discontinuous (X γ-HCH = 100%, 48 h) operation. Contribution of HCH adsorption over iron microparticles was found negligible being benzene and Cl the final dechlorination products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Begum, A., & Gautam, S. K. (2012). Endosulfan and lindane degradation using ozonation. Environmental Technology, 33(8), 943–949.

    Article  CAS  Google Scholar 

  • Buser, H. R., & Muller, M. D. (1995). Isomer and enantioselective degradation of Hexachlorocyclohexane isomers in sewage-sludge under anaerobic conditions. Environmental Science & Technology, 29(3), 664–672.

    Article  CAS  Google Scholar 

  • Camacho-Pérez, B., Ríos-Leal, E., Rinderknecht-Seijas, N., & Poggi-Varaldo, H. M. (2012). Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. Journal of Environmental Management, 95, S306–S318.

    Article  Google Scholar 

  • Chang, C., Lian, F., & Zhu, L. (2011). Simultaneous adsorption and degradation of gamma-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environmental Pollution, 159(10), 2507–2514.

    Article  CAS  Google Scholar 

  • Chen, Z., Cheng, Y., Chen, Z., Megharaj, M., & Naidu, R. (2012). Kaolin-supported nanoscale zero-valent iron for removing cationic dye-crystal violet in aqueous solution. Journal of Nanoparticle Research, 14(8), 899.

    Article  CAS  Google Scholar 

  • Cong, X., Xue, N., Wang, S., Li, K., & Li, F. (2010). Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron. Science of the Total Environment, 408(16), 3418–3423.

    Article  CAS  Google Scholar 

  • Dutchak, S., Shatalov, V., Mantseva, M., Rozovskaya, O., Vulykh, N., Fedyunin, M., Aas, W., Breivik, K., Mano, S. (2004). Persistent organic pollutants in the environment, status report 3. Cooperative Programme for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe.

  • Elliott, D. W., Lien, H., & Zhang, W. (2008). Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. Journal of Environmental Quality, 37(6), 2192–2201.

    Article  CAS  Google Scholar 

  • Elliott, D. W., Lien, H., & Zhang, W. (2009). Degradation of lindane by zero-valent iron nanoparticles. Journal of Environmental Engineering, 135(5), 317–324.

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2012a). Selected analytical methods for environmental remediation and recovery (SAM).

  • Environmental Protection Agency (2012b). A citizen’s guide to soil vapor extraction and air sparging.

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.

    Article  CAS  Google Scholar 

  • Grittini, C., Malcomson, M., Fernando, Q., & Korte, N. (1995). Rapid dechlorination of polychlorinated-biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11), 2898–2900.

    Article  CAS  Google Scholar 

  • Joo, S. H., & Zhao, D. (2008). Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere, 70(3), 418–425.

    Article  CAS  Google Scholar 

  • Lacinova, L., Cernik, M., Sourkova, H. (2013). Degradation of chlorinated cyclohexanes (lindane) by zero-valent iron nanoparticles (NZVI). Nanocon 2013, 5th International Conference, 453–455.

  • Liu, T., Li, X., & Waite, T. D. (2014). Depassivation of aged Fe0 by divalent cations: correlation between contaminant degradation and surface complexation constants. Environmental Science & Technology, 48(24), 14564–14571.

    Article  CAS  Google Scholar 

  • Lowry, G. V., & Johnson, K. M. (2004). Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 38(19), 5208–5216.

    Article  CAS  Google Scholar 

  • Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 28(12), 2045–2053.

    Article  CAS  Google Scholar 

  • Mertens, B., Blothe, C., Windey, K., De Windt, W., & Verstraete, W. (2007). Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. Chemosphere, 66(1), 99–105.

    Article  CAS  Google Scholar 

  • Morrison, R. T. and Boyd, R. N. (1987). Study guide to organic chemistry. Allyn & Bacon, 5th ed., ISBN: 0205106463.

  • Nagpal, V., Bokare, A. D., Chikate, R. C., Rode, C. V., & Paknikar, K. M. (2010). Reductive dechlorination of gamma-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles. Journal of Hazardous Materials, 175(1–3), 680–687.

    Article  CAS  Google Scholar 

  • Nienow, A. M., Bezares-Cruz, J. C., Poyer, I. C., Hua, I., & Jafvert, C. T. (2008). Hydrogen peroxide-assisted UV photodegradation of lindane. Chemosphere, 72(11), 1700–1705.

    Article  CAS  Google Scholar 

  • Nitoi, I., Oncescu, T., & Oancea, P. (2013). Mechanism and kinetic study for the degradation of lindane by photo-Fenton process. Journal of Industrial and Engineering Chemistry, 19(1), 305–309.

    Article  CAS  Google Scholar 

  • Peng, L., Deng, D., Guan, M., Fang, X., & Zhu, Q. (2015). Remediation HCHs POPs-contaminated soil by activated persulfate technologies: feasibility, impact of activation methods and mechanistic implications. Separation and Purification Technology, 150, 215–222.

    Article  CAS  Google Scholar 

  • Prager, J. C. (1995). Environmental contaminant reference databook volume 1. New York: Van Nostrand Reinhold. 1264 p.

    Google Scholar 

  • San Roman, I., Alonso, M. L., Bartolome, L., Galdames, A., Goiti, E., Ocejo, M., Moragues, M., Alonso, R. M., & Vilas, J. L. (2013). Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere, 93(7), 1324–1332.

    Article  CAS  Google Scholar 

  • Schuth, C., & Reinhard, M. (1998). Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Applied Catalysis B: Environmental, 18(3–4), 215–221.

    Article  CAS  Google Scholar 

  • Senthilnathan, J., & Philip, L. (2010). Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal, 161(1), 83–92.

    Article  CAS  Google Scholar 

  • Silvestroni, L., & Palleschi, S. (1999). Effects of organochlorine xenobiotics of human spermatozoa. Chemosphere, 39(8), 1249–1252.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, A., Misra, V., & Singh, R. P. (2011). Degradation of lindane contaminated soil using zero-valent iron nanoparticles. Journal of Biomedical Nanotechnology, 7(1), 175–176.

    Article  CAS  Google Scholar 

  • Singh, R., Misra, V., Mudiam, M. K. R., Chauhan, L. K. S., & Singh, R. P. (2012). Degradation of gamma-HCH spiked soil using stabilized Pd/Fe-0 bimetallic nanoparticles: pathways, kinetics and effect of reaction conditions. Journal of Hazardous Materials, 237, 355–364.

    Article  Google Scholar 

  • Usman, M., Tascone, O., Faure, P., & Hanna, K. (2014). Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils. Science of the Total Environment, 476, 434–439.

    Article  Google Scholar 

  • Vikelsoe, J., & Johansen, E. (2000). Estimation of dioxin emission from fires in chemicals. Chemosphere, 40(2), 165–175.

    Article  CAS  Google Scholar 

  • Wacławek, S., Antoš, V., Hrabák, P., Černík, M., & Elliott, D. (2016). Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environmental Science and Pollution Research, 23(1), 765–773.

    Article  Google Scholar 

  • Walker, K., Vallero, D. A., & Lewis, R. G. (1999). Factors influencing the distribution of lindane and other hexachlorocyclohexanes in the environment. Environmental Science & Technology, 33(24), 4373–4378.

    Article  CAS  Google Scholar 

  • Wang, Z., Peng, P., & Huang, W. (2009). Dechlorination of gamma-hexachlorocyclohexane by zero-valent metallic iron. Journal of Hazardous Materials, 166(2–3), 992–997.

    Article  CAS  Google Scholar 

  • World Health Organization. (1991). Environment health criteria 124: lindane. International Programme on Chemical Safety, WHO EHC.

  • Yang, J., & Sun, H. (2015). Degradation of γ-hexachlorocyclohexane using carboxymethylcellulose-stabilized Fe/Ni nanoparticles. Water, Air, & Soil Pollution, 226(9), 1–15.

    Article  CAS  Google Scholar 

  • Yang, S., Lei, M., Chen, T., Li, X., Liang, Q., & Ma, C. (2010). Application of zerovalent iron (Fe0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant. Chemosphere, 79(7), 727–732.

    Article  CAS  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5(3–4), 323–332.

    Article  CAS  Google Scholar 

  • Zinovyev, S. S., Shinkova, N. A., Perosa, A., & Tundo, P. (2004). Dechlorination of lindane in the multiphase catalytic reduction system with Pd/C, Pt/C and Raney-Ni. Applied Catalysis B: Environmental, 47(1), 27–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Comunidad Autonoma of Madrid (Project S2013-MAE-2739 CARESOIL-CM) and from the Spanish Ministry of Economy and Competitiveness (Project CTM2013-43794-R). CMD acknowledges the Spanish MICINN for “Juan de la Cierva” post doctoral grant (FJCI-2014-20732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Santos.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 123 kb)

ESM 2

(DOC 54 kb)

ESM 3

(DOC 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez, C.M., Rodriguez, S., Lorenzo, D. et al. Degradation of Hexachlorocyclohexanes (HCHs) by Stable Zero Valent Iron (ZVI) Microparticles. Water Air Soil Pollut 227, 446 (2016). https://doi.org/10.1007/s11270-016-3149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3149-8

Keywords

Navigation