Skip to main content
Log in

A Method Using Liquid-Liquid Microextraction in a Dynamic System for Preconcentration and Determination of Lead in Food Samples

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this paper, a method using liquid-liquid microextraction in a dynamic system combined with spectrophotometry was developed for preconcentration and determination of lead in samples of shrimp and oyster. In the procedure, a system is proposed in which the organic drop is maintained at the bottom of a glass tube, with the passage of a stream of aqueous solution, avoiding the use of a microsyringe. The method is based on the transfer of metal species present in the aqueous phase in the form of complexes with the ligand 2-(5-bromo-2-pyridylazo)-5-dimethylaminophenol (5-Br-PADAP) to the organic phase trichloroethylene. Experimental conditions, such as sample flow rate, concentration of the complexing reagent, extraction solvent, time of extraction, and pH, were optimized. Under optimized conditions, the limit of detection and quantification obtained were 0.48 and 1.60 μg L−1, respectively. The accuracy was evaluated by the determination of lead in the certified reference material BCR-414, Plankton. The procedure was applied to the determination of lead in samples of shellfish, with recoveries ranging from 92 to 103 %. The method enabled a fast, accurate, and simple alternative for the determination of lead in seafood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboufazeli, F., Zhad, H., Sadeghi, O., Karimi, M., & Najafi, E. (2013). Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples. Food Chemistry, 141, 3459–3465.

    Article  CAS  Google Scholar 

  • Andersen, O. (1999). Principles and recent developments in chelation treatment of metal intoxication. Chemical Reviews, 99, 2683–2710.

    Article  CAS  Google Scholar 

  • Asensio-Ramos, M., Ravelo-Perez, L. M., Gonzalez-Curbelo, M. A., & Hernandez-Borges, J. (2011). Liquid phase microextraction applications in food analysis. Journal of Chromatography A, 1218, 7415–7437.

    Article  CAS  Google Scholar 

  • Aydin, F. A., & Soylak, M. (2010). Separation, preconcentration and inductively coupled plasma-mass spectrometric (ICP-MS) determination of thorium(IV), titanium(IV), iron(III), lead(II) and chromium(III) on 2-nitroso-1-naphthol impregnated MCI GEL CHP20P resin. Journal of Hazardous Materials, 173, 669–674.

    Article  CAS  Google Scholar 

  • Baroumand, N., Akbari, A., Shirani, M., & Shokri, Z. (2015). Homogeneous liquid-liquid microextraction via flotation assistance with thiol group chelating reagents for rapid and efficient determination of cadmium(II) and copper(II) ions in water samples. Water Air and Soil Pollution, 226, 2254.

    Article  Google Scholar 

  • Chamsaz, M., Arbab-Zavar, M. H., Darroudi, A., & Salehi, T. (2009). Preconcentration of thallium (I) by single drop microextraction with electrothermal atomic absorption spectroscopy detection using dicyclohexano-18-crown-6 as extractant system. Journal of Hazardous Materials, 167, 597–601.

    Article  CAS  Google Scholar 

  • Elci, L., Soylak, M., & Dogan, M. (1992). Preconcentration of trace-metals in river waters by the application of chelate adsorption on Amberlite XAD-4. Fresenius Journal of Analytical Chemistry, 342, 175–178.

    Article  CAS  Google Scholar 

  • Fan, J., Zhu, G. F., Wang, H. B., & Wang, J. J. (2011). On-line solid-phase extraction using alizarin violet functionalized silica gel for determination of trace lead in environmental samples and wastewater by sequential injection spectrophotometry. Science China-Chemistry, 54, 998–1003.

    Article  CAS  Google Scholar 

  • Gao, L., Chen, S. J., Chen, F., Zhou, W. H., & Yao, J. L. (2014). Cloud point extraction and spectrophotometry determination of lead in environment water using 5-Br-PADAP. In H. Zhang, D. Jin, & X. J. Zhao (Eds.), Advanced research on material engineering, chemistry, bioinformatics III (Vol. 830, pp. 345–348). Stafa-Zurich: Trans Tech Publications Ltd.

    Google Scholar 

  • Hepp, N. M., Mindak, W. R., & Cheng, J. (2009). Determination of total lead in lipstick: development and validation of a microwave-assisted digestion, inductively coupled plasma-mass spectrometric method. Journal of Cosmetic Science, 60, 405–414.

    CAS  Google Scholar 

  • Jeannot, M. A., & Cantwell, F. F. (1996). Solvent microextraction into a single drop. Analytical Chemistry, 68, 2236–2240.

    Article  CAS  Google Scholar 

  • Lemos, V. A., Ferreira, V. J., Barreto, J. A., & Meira, L. A. (2015). Development of a method using ultrasound-assisted emulsification microextraction for the determination of nickel in water samples. Water Air and Soil Pollution, 226, 141.

    Article  Google Scholar 

  • Lemos, V. A., Lima, A. D., Santos, J. S., Castro, J. T., & Ferreira, S. L. C. (2012). Determination of lead in water samples after its separation and preconcentration by 4,5-dihydroxy-1,3-benzenedisulfonic acid functionalised polyurethane foam. International Journal of Environmental Analytical Chemistry, 92, 1121–1134.

    Article  CAS  Google Scholar 

  • Lemos, V. A., & Vieira, U. S. (2013). Single-drop microextraction for the determination of manganese in seafood and water samples. Microchimica Acta, 180, 501–507.

    Article  CAS  Google Scholar 

  • Li, L., & Hu, B. (2007). Hollow-fibre liquid phase microextraction for separation and preconcentration of vanadium species in natural waters and their determination by electrothermal vaporization-ICP-OES. Talanta, 72, 472–479.

    Article  CAS  Google Scholar 

  • Li, L., Hu, B., Xia, L., & Jiang, Z. (2006). Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta, 70, 468–473.

    Article  CAS  Google Scholar 

  • Lin, H., Wang, J., Zeng, L., Li, G., Sha, Y., Wu, D., & Liu, B. (2013). Development of solvent micro-extraction combined with derivatization. Journal of Chromatography A, 1296, 235–242.

    Article  CAS  Google Scholar 

  • Mallah, M. H., Shemirani, F., & Maragheh, M. G. (2008). Use of dispersive liquid-liquid microextraction for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium. Journal of Radioanalytical and Nuclear Chemistry, 278, 97–102.

    Article  CAS  Google Scholar 

  • Maltez, H. F., Borges, D. L. G., Carasek, E., Welz, B., & Curtius, A. J. (2008). Single drop micro-extraction with O, O-diethyl dithiophosphate for the determination of lead by electrothermal atomic absorption spectrometry. Talanta, 74, 800–805.

    Article  CAS  Google Scholar 

  • Martinis, E. M., Berton, P., Altamirano, J. C., Hakala, U., & Wuilloud, R. G. (2010). Tetradecyl(trihexyl)phosphonium chloride ionic liquid single-drop microextraction for electrothermal atomic absorption spectrometric determination of lead in water samples. Talanta, 80, 2034–2040.

    Article  CAS  Google Scholar 

  • Mazloomifar, A., & Khatibi, N. (2014). Preconcentration and determination of lead by solidification of floated organic drop coupled with nanodrop spectrophotometry. In M. H. Parsa (Ed.), Ultrafine grained and nano-structured materials IV (Vol. 829, pp. 825–830). Stafa-Zurich: Trans Tech Publications Ltd.

    Google Scholar 

  • Oliveira, A. R. M. D., Magalhães, I. R. D. S., Santana, F. J. M. D., & Bonato, P. S. (2008). Liquid-phase microextraction (LPME): fundamentals and applications to the analysis of drugs in biological samples. Química Nova, 31, 637–644.

    Article  Google Scholar 

  • Ozcan, S. G., Satiroglu, N., & Soylak, M. (2010). Column solid phase extraction of iron(III), copper(II), manganese(II) and lead(II) ions food and water samples on multi-walled carbon nanotubes. Food and Chemical Toxicology, 48, 2401–2406.

    Article  CAS  Google Scholar 

  • Paoliello, M. B., & Capitani, E. (2005). Environmental contamination and human exposure to lead in Brazil. In G. Ware, L. Albert, D. G. Crosby, P. Voogt, O. Hutzinger, J. Knaak, F. Mayer, D. P. Morgan, D. Park, R. Tjeerdema, D. Whitacre, R. H. Yang, & F. Gunther (Eds.), Reviews of environmental contamination and toxicology (Vol. 184, pp. 59–96). New York: Springer.

    Chapter  Google Scholar 

  • Pellerano, R. G., Romero, C. H., Acevedo, H. A., Vazquez, F. A., & Marchevsky, E. (2007). Determination of lead in waters of Parana River by solid phase spectrophotometry. Chemia Analityczna, 52, 501–510.

    CAS  Google Scholar 

  • Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochimica Acta Part B-Atomic Spectroscopy, 64, 1–15.

    Article  Google Scholar 

  • Pena, F., Lavilla, I., & Bendicho, C. (2008). Immersed single-drop microextraction interfaced with sequential injection analysis for determination of Cr(VI) in natural waters by electrothermal-atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 498–503.

    Article  Google Scholar 

  • Perrin, D. D., & Dempsey, B. (1974). Buffers for pH and metal ion control. London: Chapman and Hall.

    Google Scholar 

  • Rezaee, M., Assadi, Y., Hosseinia, M. R. M., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116, 1–9.

    Article  CAS  Google Scholar 

  • Saeidi, I., Barfi, B., Asghari, A., Gharahbagh, A. A., Barfi, A., Peyrovi, M., Afsharzadeh, M., & Hojatinasab, M. (2015). Ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with hybrid artificial neural network-genetic algorithm for speciation and optimized determination of ferro and ferric in environmental water samples. Environmental Monitoring and Assessment, 187, 631.

    Article  Google Scholar 

  • Sumi, Y., Inoue, T., Muraki, T., & Suzuki, T. (1983). A highly sensitive chelator for metal staining, bromopyridylazo-diethylaminophenol. Stain Technology, 58, 325–328.

    Article  CAS  Google Scholar 

  • Tarigh, G. D., & Shemirani, F. (2013). Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices. Talanta, 115, 744–750.

    Article  Google Scholar 

  • Unsal, Y. E., Soylak, M., & Tuzen, M. (2015). Ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV-visible spectrophotometry. Environmental Monitoring and Assessment, 187, 203.

    Article  Google Scholar 

  • Urucu, O. A., & Aydin, A. (2015). Coprecipitation for the determination of copper(II), zinc(II), and lead(II) in seawater by flame atomic absorption spectrometry. Analytical Letters, 48, 1767–1776.

    Article  Google Scholar 

  • Vieira, D. R., Castro, J. T., & Lemos, V. A. (2011). Determination of lead and manganese in biological samples and sediment using slurry sampling and flame atomic absorption spectrometry. Journal of AOAC International, 94, 645–649.

    CAS  Google Scholar 

  • Xia, L., Li, X., Wu, Y., Hu, B., & Chen, R. (2008). Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 1290–1296.

    Article  Google Scholar 

  • Zang, X. H., Wu, Q. H., Zhang, M. Y., Xi, G. H., & Wang, Z. (2009). Developments of dispersive liquid-liquid microextraction technique. Chinese Journal of Analytical Chemistry, 37, 161–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valfredo Azevedo Lemos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, R.M., Oliveira, R.V., de Oliveira, D.M. et al. A Method Using Liquid-Liquid Microextraction in a Dynamic System for Preconcentration and Determination of Lead in Food Samples. Water Air Soil Pollut 227, 138 (2016). https://doi.org/10.1007/s11270-016-2842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2842-y

Keywords

Navigation