Skip to main content
Log in

Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron Grafted on Acid-Activated Attapulgite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The nanoscale zero-valent iron grafted on acid-activated attapulgite (A-nZVI) was prepared by a liquid-phase reduction method and used for Cr(VI) removal from solution with enhanced efficiency. The structure of the composite A-nZVI was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller surface area analysis. nZVI was well-dispersed on the surface of acid-treated attapulgite, and no obvious aggregation was observed due to the support of rod-like structure of attapulgite, which is beneficial to Cr(VI) removal. Batch experiments revealed that the removal of Cr(VI) using A-nZVI was consistent with pseudo-first-order reaction kinetics, and removal efficiency was up to 98.73 % within 60 min for 100 mL 20 mg/L Cr(VI) at the initial pH 7.0 and 4.0 g/L A-nZVI. The pseudo-first-order rate constant k obs was independent of initial Cr(VI) concentration, but there was a good linearity (r 2 = 0.95) between k obs and the A-nZVI dosage. This study demonstrates that A-nZVI has the potential to become a promising material for in situ groundwater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan, M. L., & Kukacka, L. E. (1995). Blast furnace slag-modified grouts for in situ stabiliza-tion of chromium-contaminated soil. Waste Management, 15, 193–202.

    Article  CAS  Google Scholar 

  • Bansal, M., Garg, U., Singh, D., & Garg, V. K. (2009a). Removal of Cr (VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk. Journal of Hazardous Materials, 162, 312–320.

    Article  CAS  Google Scholar 

  • Bansal, M., Singh, D., & Garg, V. K. (2009b). A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons. Journal of Hazardous Materials, 171, 83–92.

    Article  CAS  Google Scholar 

  • Barrios, M. S., Gonzales, L. V. F., & Rodriguez, M. A. V. (1995). Acid activation of a palygorskite with HCl development of physic-chemical, textural and surface properties. Applied Clay Science, 10, 247–258.

    Article  Google Scholar 

  • Bezbaruah, A. N., Krajangpan, S., Chisholm, B. J., Khan, E., & Bermudez, J. J. (2009). Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Journal of Hazardous Materials, 166, 1339–1343.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., & Jambor, J. L. (1997). In situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environmental Science & Technology, 31, 3348–3357.

    Article  CAS  Google Scholar 

  • Cao, J. S., & Zhang, W. X. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials, 132, 213–219.

    Article  CAS  Google Scholar 

  • Chen, H., Zhao, Y. G., & Wang, A. Q. (2007). Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149, 346–354.

    Article  CAS  Google Scholar 

  • Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1985). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association, American Water Works Association and Water Environment Federation.

    Google Scholar 

  • Doong, R. A., & Lai, Y. J. (2005). Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Research, 39, 2309–2318.

    Article  CAS  Google Scholar 

  • Elliott, D. W., Lien, H. L., & Zhang, W. X. (2009). Degradation of Lindane by zero-valent iron nanoparticles. Journal of Environmental Engineering, 135, 317–324.

    Article  CAS  Google Scholar 

  • Frost, R. L., Xi, Y. F., & He, H. P. (2010). Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. Journal of Colloid and Interface Science, 341, 153–161.

    Article  CAS  Google Scholar 

  • Fruchter, J. S. (2002). In situ treatment of chromium-contaminated groundwater. Environmental Science & Technology, 36, 464–472.

    Article  Google Scholar 

  • Giustetto, R., Xamena, F. X. L., Ricchiardi, G., Bordiga, S., Damin, A., Gobetto, R., et al. (2005). A Blue: a computational and spectroscope study. The Journal of Physical Chemistry B, 109, 19360–19368.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.

    Article  CAS  Google Scholar 

  • Huang, J., Liu, Y., Jin, Q., Wang, X., & Yang, J. (2007). Adsorption studies of a water soluble dye, reactive red MF-3B, using sonication surfactant-modified attapulgite clay. Journal of Hazardous Materials, 143, 541–548.

    Article  CAS  Google Scholar 

  • Huang, Z., Huang, J., & Wang, X. (2011). Effect of hydrochloric acid modification on adsorption of tetracycline on attapulgite (in Chinese). Technology of Water Treatment, 37, 47–50.

    Google Scholar 

  • Khezami, L., & Capart, R. (2005). Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. Journal of Hazardous Materials, 123, 223–231.

    Article  CAS  Google Scholar 

  • Kongsricharoern, N., & Polprasert, C. (1996). Chromium removal by a bipolar electro-chemical precipitation process. Water Science and Technology, 34, 109–116.

    Article  CAS  Google Scholar 

  • Krajangpan, S., Jarabek, L., Jepperson, J., Chisholm, B., & Bezbaruah, A. (2008). Polymer modified iron nanoparticles for environmental remediation. Polymeric Preprints, 49, 921.

    CAS  Google Scholar 

  • Liu, Q. Y., Bei, Y. L., & Zhou, F. (2009). Removal of lead (II) from aqueous solution with amino-functionalized nanoscale zero-valent iron. Central European Journal of Chemistry, 7, 79–82.

    Article  CAS  Google Scholar 

  • Liu, T. Y., Zhao, L., Sun, D. S., & Tan, X. (2010). Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. Journal of Hazardous Materials, 184, 724–730.

    Article  CAS  Google Scholar 

  • Max, C. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188, 1–5.

    Article  Google Scholar 

  • Oh, Y. J., Song, H., Shin, W. S., Choi, S. J., & Kim, Y. H. (2007). Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere, 66, 858–865.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.

    Article  CAS  Google Scholar 

  • Qiu, X. H., Fang, Z. Q., Liang, B., Gu, F. L., & Xu, Z. C. (2011). Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials, 193, 70–81.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Yeon, K. H., Kang, S. Y., Lee, J. U., Kim, K. W., & Moon, S. H. (2002). Studies on adsorptive removal of Co (II), Cr (III) and Ni (II) by IRN77 cation-exchange resin. Journal of Hazardous Materials, 92, 185–198.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Bertsch, P. M., & Schwallie, L. (1999). In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environmental Science & Technology, 33, 938–944.

    Article  CAS  Google Scholar 

  • Shi, L. N., Zhang, X., & Chen, Z. L. (2011). Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.

    Article  CAS  Google Scholar 

  • Shih, Y. H., & Tai, Y. T. (2010). Reaction of decabrominated diphenyl ether by zero valent iron nanoparticles. Chemosphere, 78, 1200–1206.

    Article  CAS  Google Scholar 

  • Shu, H. Y., Chang, C. M., Yu, H. H., & Chen, W. H. (2007). Reduction of an azo dye acid black 24 solution using synthesized nanoscale zero valent iron particles. Journal of Colloid and Interface Science, 314, 87–89.

    Article  Google Scholar 

  • Sun, H., Wang, L., Zhang, R., Sui, J., & Xu, G. (2006). Treatment of groundwater polluted by arsenic compounds by zero valent iron. Journal of Hazardous Materials, 129, 297–303.

    Article  CAS  Google Scholar 

  • US Department of Health and Human Services. (1991). Toxicological profile for chromium. Washington, DC: Public Health Service Agency for Toxic substances and Diseases Registry.

    Google Scholar 

  • Wang, C. B., & Zhang, W. X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.

    Article  CAS  Google Scholar 

  • Wang, W., Jin, Z. H., Li, T. L., Zhang, H., & Gao, S. (2006). Preparation of spherical iron nan-oclusters in ethanol–water solution for nitrate removal. Chemosphere, 65, 1396–1404.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., Su, C. M., Ford, R. G., & Paul, C. J. (2005). Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environmental Science & Technology, 39, 4599–4605.

    Article  CAS  Google Scholar 

  • Zhang, J. H., Hao, Z. W., Zhang, Z., Yang, Y. P., & Xu, X. H. (2010). Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron. Process Safety and Environmental Protection, 88, 439–445.

    Article  CAS  Google Scholar 

  • Zhou, X., Korenaga, T., Takahashi, T., Moriwake, T., & Shinoda, S. (1993). A process monitoring/controlling system for the treatment of wastewater containing chromium (VI). Water Research, 27, 1049–1054.

    Article  CAS  Google Scholar 

  • Zhou, H., Han, J., Baig, S. A., & Xu, X. (2011). Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles. Journal of Hazardous Materials, 198, 7–11.

    Article  CAS  Google Scholar 

  • Zhu, B. W., Lim, T., & Feng, J. (2006). Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 65, 1137–1145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant no. 21377056) and the research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (grant no. AE201319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeqing Lan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, G., Zhang, J., Guo, J. et al. Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron Grafted on Acid-Activated Attapulgite. Water Air Soil Pollut 225, 1979 (2014). https://doi.org/10.1007/s11270-014-1979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1979-9

Keywords

Navigation