Skip to main content
Log in

Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Continuous seawater disinfection by chlorine dioxide (ClO2) was studied at residual concentrations of 0.2 and 0.4 mg ClO2 L−1 and compared with sodium hypochlorite (NaClO) disinfection at 1 mg L−1 of free chlorine. The results revealed that both disinfectants decrease the biological activity and cell counts in seawater. When NaClO was used, both the cell counts and the adenosine triphosphate (ATP) level were diminished (1.8 log and 76 %, respectively); however, when ClO2 was used, the ATP level decreased to the same level as with NaClO (78–84 %), but the cell counts were reduced only weakly (~0.1 log). The biofilm concentration in seawater without disinfectants reached 700 pg ATP cm−2 after 40 days, whereas in the treated lines, the biofilms remained below 1 pg ATP cm−2 irrespective of the disinfectant and dose used. ClO2 generated much less trihalomethanes than NaClO (<1 vs. 154 μg L−1). Bromoform (77–96 %) was the predominant chemical species found in disinfected seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Azis, P. K., Al-Tisan, I., & Sasikumar, N. (2001). Biofouling potential and environmental factors of seawater at a desalination plant intake. Desalination, 135, 69–82.

    Article  Google Scholar 

  • Agus, E., Voutchkov, N., & Sedlak, D. L. (2009). Disinfection by-products and their potential impact on the quality of water produced by desalination systems: a literature review. Desalination, 237, 214–237.

    Article  CAS  Google Scholar 

  • Aieta, E. M., & Berg, J. D. (1986). A review of chlorine dioxide in drinking water treatment. Journal American Water Works Association, 78, 62–72.

    CAS  Google Scholar 

  • Ali, M. Y., & Riley, J. P. (1989). The production of brominated methanes in desalination plants in Kuwait. Water Research, 23, 1099–1106.

    Article  CAS  Google Scholar 

  • Allonier, A. S., Khalanski, M., Camel, V., & Bermond, A. (1999). Characterization of chlorination by-products in cooling effluents of coastal nuclear power stations. Marine Pollution Bulletin, 38, 1232–1241.

    Article  CAS  Google Scholar 

  • Choi, D. H., Park, J. S., Hwang, C. Y., Huh, S. H., & Cho, B. C. (2002). Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters. Marine Ecology Progress Series, 229, 1–10.

    Article  Google Scholar 

  • Chowdhury, S. (2012). Heterotrophic bacteria in drinking water distribution system: a review. Environmental Monitoring and Assessment, 184, 6087–6137.

    Article  CAS  Google Scholar 

  • Dalvi, A. G. I., Al-Rasheed, R., & Javeed, M. A. (2000). Haloacetic acids (HAAs) formation in desalination processes from disinfectants. Desalination, 129, 261–271.

    Article  CAS  Google Scholar 

  • Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Research, 42, 13–51.

    Article  CAS  Google Scholar 

  • El Din, A. M. S., Arain, R. A., & Hammoud, A. A. (1991). A contribution to the problem of trihalomethane formation from the arabian gulf water. Desalination, 85, 13–32.

    Article  Google Scholar 

  • EPA (1999). Guidance manual alternative disinfectants and oxidants. 4. Chlorine dioxide.

  • EPA (2001). Stage 1 Disinfectants and Disinfection Byproducts Rule, EPA 816-F-01-014. http://water.epa.gov/lawsregs/rulesregs/sdwa/mdbp/upload/2001_10_23_mdbp_stage1dbprfactsheet.pdf. Accessed 3 Sept 2013

  • EPA (2003). Method 5021A: Volatile organic compounds in various sample matrices using equilibrium headspace Analysis.

  • EU Standards (1998). COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. http://www.nucfilm.com/eu_water_directive.pdf. Accessed 3 Sept 2013

  • Fabbricino, M., & Korshin, G. V. (2005). Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination, 176, 57–69.

    Article  CAS  Google Scholar 

  • Flemming, H. (2002). Biofouling in water systems—cases, causes and countermeasures. Applied Microbiology and Biotechnology, 59, 629–640.

    Article  CAS  Google Scholar 

  • Flury, M., & Papritz, A. (1993). Bromide in the natural environment—occurrence and toxicity. Journal of Environmental Quality, 22, 747–758.

    Article  CAS  Google Scholar 

  • Fogelqvist, E., & Krysell, M. (1991). Naturally and anthropogenically produced bromoform in the Kattegatt, a semi-enclosed oceanic basin. Journal of Atmospheric Chemistry, 13, 315–324.

    Article  CAS  Google Scholar 

  • Gagnon, G., O’Leary, K., Volk, C., Chauret, C., Stover, L., & Andrews, R. (2004). Comparative analysis of chlorine dioxide, free chlorine and chloramines on bacterial water quality in model distribution systems. Journal of Environmental Engineering, 130, 1269–1279.

    Article  CAS  Google Scholar 

  • Gasol, J. M., & Del Giorgio, P. A. (2000). Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina, 64, 197–224.

    Article  Google Scholar 

  • Hammes, F., Berney, M., Wang, Y., Vital, M., Köster, O., & Egli, T. (2008). Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42, 269–277.

    Article  CAS  Google Scholar 

  • Hammes, F., Goldschmidt, F., Vital, M., Wang, Y., & Egli, T. (2010). Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Research, 44, 3915–3923.

    Article  CAS  Google Scholar 

  • Hoefel, D., Grooby, W., Monis, P., Andrews, S., Saint, C., Grooby, W., et al. (2003). Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques. Journal of Microbiological Methods, 55, 585–597.

    Article  Google Scholar 

  • Kim, D., Jung, S., Sohn, J., Kim, H., & Lee, S. (2009). Biocide application for controlling biofouling of SWRO membranes—an overview. Desalination, 238, 43–52.

    Article  CAS  Google Scholar 

  • Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, M. J., et al. (2006). Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 40, 7175–7185.

    Article  CAS  Google Scholar 

  • Kruithof, J., Schippers, J., Kamp, P., Folmer, H., & Hofman, J. (1998). Integrated multi-objective membrane systems for surface water treatment: pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Desalination, 117, 37–48.

    Article  CAS  Google Scholar 

  • Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination. Desalination, 220, 1–15.

    Article  CAS  Google Scholar 

  • Lebaron, P., Servais, P., Agogue, H., Courties, C., & Joux, F. (2001). Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Applied and Environmental Microbiology, 67, 1775–1782.

    Article  CAS  Google Scholar 

  • Lelieveld, H. L. M., Mostert, M. A., & Holah, J. T. (2005). Handbook of hygiene control in the food industry. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Liang, L., & Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology, 37, 2920–2928.

    Article  CAS  Google Scholar 

  • Marconnet, C., Houari, A., Seyer, D., Djafer, M., Coriton, G., Heim, V., et al. (2011). Membrane biofouling control by UV irradiation. Desalination, 276, 75–81.

    Article  CAS  Google Scholar 

  • Matin, A., Khan, Z., Zaidi, S. M. J., & Boyce, M. C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination, 281, 1–16.

    Article  CAS  Google Scholar 

  • Mayan Kutty, P. C., & Al-Jarrah, S. (1991). Disinfection by-products—present status and future perspective in sea water desalination, 53–72. Presented at the IDA world conference on desalination and water reuse, Washington DC., 25–29 Aug 1991. http://www.swcc.gov.sa/files%5Cassets%5CResearch%5CTechnical%20Papers%5CChemstry/DISINFECTION%20BY-PRODUCTS%20-%20PRESENT%20STATUS%20ANDFUTURE%20PERSPECT.pdf. Accessed 3 Sept 2013

  • Mayan Kutty, P. C., Nomani, A. A., Thankachan, T. S., & Al-Rasheed, R. (1995). Studies on THMs formation by various disinfectants in seawater desalination plans, 1146–1162. Presented at the IDA conference, Abu Dhabi, held during 18–24 Nov 1995. http://www.swcc.gov.sa/files%5Cassets%5CResearch%5CTechnical%20Papers%5CChemstry/STUDIES%20ON%20THMs%20FORMATION%20BY%20VARIOUSDISINFECTANTS%20IN%20SEAWATE.pdf. Accessed 3 Sept 2013

  • Metz, D. H., Reynolds, K., Meyer, M., & Dionysiou, D. D. (2011). The effect of UV/H(2)O(2) treatment on biofilm formation potential. Water Research, 45, 497–508.

    Article  CAS  Google Scholar 

  • Micale, G., Cipollina, A., & Rizzuti, L. (2009). Seawater desalination: conventional and renewable energy processes. Berlin: Springer.

    Book  Google Scholar 

  • Organization, I. M. (2005). Convention for the management of ballast water and sediment in ships. London: International Maritime Organization.

    Google Scholar 

  • Parinet, J., Tabaries, S., Coulomb, B., Vassalo, L., & Boudenne, J. (2012). Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Research, 46, 828–836.

    Article  CAS  Google Scholar 

  • Pérez Pavón, J. L., Herrero Martín, S., García Pinto, C., & Moreno Cordero, B. (2008). Determination of trihalomethanes in water samples: a review. Analytica Chimica Acta, 629, 6–23.

    Article  CAS  Google Scholar 

  • Petrucci, G., & Rosellini, M. (2005). Chlorine dioxide in seawater for fouling control and post-disinfection in potable waterworks. Desalination, 182, 283–291.

    Article  CAS  Google Scholar 

  • Ram, N. M., Mussalli, Y. G., & Chow, W. (1990). Total trihalomethane formation during targeted and conventional chlorination of seawater for biofouling control. Research Journal of the Water Pollution Control Federation, 62, 789–795.

    CAS  Google Scholar 

  • Rav-Acha, C. (1998). Transformation of aqueous pollutants by chlorine dioxide: reaction, mechanisms and products. In J. Hrubec (Ed.), Handbook of environmental chemistry—Vol. 5. Water pollution. Quality and treatment of drinking water II (pp. 143–175). Berlin: Springer.

    Chapter  Google Scholar 

  • Richardson, S. D., Thruston, A. D., Rav-Acha, C., Groisman, L., Popilevsky, I., Juraev, O., et al. (2003). Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environmental Science & Technology, 37, 3782–3793.

    Article  CAS  Google Scholar 

  • Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research Reviews in Mutation Research, 636, 178–242.

    Article  CAS  Google Scholar 

  • Sam Yang, J. (2001). Bromoform in the effluents of a nuclear power plant: a potential tracer of coastal water masses. Hydrobiologia, 464, 99–105.

    Article  Google Scholar 

  • Siebel, E., Wang, Y., Egli, T., & Hammes, F. (2008). Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water. Drinking Water Engineering and Science, 1, 1–6.

    Article  Google Scholar 

  • Simon, F. X., Rudé, E., Llorens, J., & Baig, S. (2013). Study on the removal of biodegradable NOM from seawater using biofiltration. Desalination, 316, 8–16.

    Article  CAS  Google Scholar 

  • Sorlini, S., & Collivignarelli, C. (2005). Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten italian natural waters. Desalination, 176, 103–111.

    Article  CAS  Google Scholar 

  • Standard Methods. (1999). Standard methods for the examination of water and wastewater. Washington, D.C: american water works association. American Public Health Association.

    Google Scholar 

  • Summerfelt, S. (2003). Ozonation and UV irradiation—an introduction and examples of current applications. Aquacultural Engineering, 28, 21–36.

    Article  Google Scholar 

  • Taylor, C. J. L. (2006). The effects of biological fouling control at coastal and estuarine power stations. Marine Pollution Bulletin, 53, 30–48.

    Article  CAS  Google Scholar 

  • van der Kooij, D., Veenendaal, H., Baarlorist, C., Vanderlift, D., & Drost, Y. (1995a). Biofilm formation on surfaces of glass and teflon exposed to treated water. Water Research, 29(7), 1655–1662.

    Article  Google Scholar 

  • van der Kooij, D., Vrouwenvelder, H. S., & Veenendaal, H. R. (1995b). Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Science and Technology, 32(8), 61–65.

    Article  Google Scholar 

  • van der Kooij, D., Vrouwenvelder, J. S., & Veenendaal, H. R. (2003). Elucidation and control of biofilm formation processes in water treatment and distribution using the unified biofilm approach. Water Science and Technology, 47(5) 83–90.

    Google Scholar 

  • Van Geluwe, S., Braeken, L., & Van der Bruggen, B. (2011). Ozone oxidation for the alleviation of membrane fouling by natural organic matter: a review. Water Research, 45, 3551–3570.

    Article  CAS  Google Scholar 

  • Volk, C. J., Hofmann, R., Chauret, C., Gagnon, G. A., Ranger, G., & Andrews, R. C. (2002). Implementation of chlorine dioxide disinfection: effects of the treatment change on drinking water quality in a full-scale distribution system. Journal of Environmental Engineering and Science, 1, 323–330.

    Article  CAS  Google Scholar 

  • Vrouwenvelder, J. S., & van der Kooij, D. (2001). Diagnosis, prediction and prevention of biofouling of NF and RO membranes. Desalination, 139, 65–71.

    Article  CAS  Google Scholar 

  • Vrouwenvelder, H. S., van Paassen, J. A. M., Folmer, H. C., Hofman, J. A. M. H., Nederlof, M. M., & van der Kooij, D. (1998). Biofouling of membranes for drinking water production. Desalination, 118, 157–166.

    Article  CAS  Google Scholar 

  • Vrouwenvelder, J. S., Kappelhof, J. W. N. M., Heijman, S. G. J., Schippers, J. C., & van der Kooij, D. (2003). Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water. Desalination, 157, 361–365.

    Article  CAS  Google Scholar 

  • WHO. (2008). Guidelines for drinking water quality. vol 1. recommendations. Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ercros for their financial support through the Fundació Bosch i Gimpera. The authors also thank Mrs. Laia Viure, Dr. Maximino Delgado and Mr. José Manuel Fortuño and all members of the Technical Services of the Institut de Ciències del Mar (CSIC) and Aleix Conesa from Leitat Technological Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Xavier Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, F.X., Berdalet, E., Gracia, F.A. et al. Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water Air Soil Pollut 225, 1921 (2014). https://doi.org/10.1007/s11270-014-1921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1921-1

Keywords

Navigation